The Neural Basis of Self-Touch in a Pain-Free Situation

Author(s): Yoshiaki Kikuchi, Maki Shirato, Akiko Machida, Toshie Inoue, Madoka Noriuchi


Objective: Self-touch is thought to be an act of coping with harmful or stressful situations, based on the mechanism which suppresses somatosensory perception as well as somatosensory cortex activity, and sympathetic activity. In addition, this suppression can be observed in even nonpainful and non-stressful situations. However, its detailed neural mechanism remains unknown. Several studied have shown, not only that the descending pain modulatory system (DPMS) plays critical roles in painful situations, but also that there is intrinsic functional connectivity in the DPMS in even non-painful situations. Based on these findings, we hypothesized that the neural system consisting of the anterior cingulate cortex (ACC), amygdala and rostral ventromedial medulla (RVM) would play a basic role in self-touch, and we here investigated interactive effects of these regions in a pain-free self-touch situation.

Methods:  We used functional magnetic resonance imaging (fMRI) to investigate brain activity induced by mere self-touch (rubbing the left hand with the right) in a pain-free and stress-free situation, and carried out the Physio-Physiological Interaction (PPI) analysis to investigate the modulatory effects of brain activity.

Results: PPI analysis showed that the rostral ACC (rACC) modulated activity in the RVM and left cerebellum (CB) via the right amygdala, such that the modulation linearly suppressed RVM and left CB activity. Furthermore, the latter was positively correlated with right primary somatosensory cortex (SI) activity. Moreover, we also showed that coherent activity in the bilateral secondary somatosensory cortex (SII) modulated activity of both the left temporoparietal junction (TPJ) and RVM, with the latter also suppressed by the modulation in a linear fashion.

Conclusion:These findings suggest that self-touch exerts inhibitory effects on sensory afferents and sympathetic activity through the ACC-amygdala-RVM (AAR) system, and that bilateral sensorimotor integration plays an important role in the effect based on the bodily self.

Full-Text | PDF

Share this