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ABSTRACT

Objective: 

The aim of this study was to develop a prediction model that integrated various image fea-
tures and neuropsychological scores to yield a single estimate reflecting the probability of 
dementia.

Method: 

A total of 130 subjects belong to Normal control group, AD group, and MCI group, were re-
cruited in this study. For these subjects, the multiple features obtained from different modali-
ties, including structural MRI morphometry (volume / shape), rs-fMRI, and neuropsychological 
assessment measures (NPA) were used to explore an optimal set of predictors of conversion 
from MCI to AD. Unlike previous studies using logistic regression analysis, a new method 
based on learning vector quantization (LVQ) and probabilistic neural network (PNN) is pro-
posed to establish a prediction model.

Results: 

We test the baseline, 1-year follow-up, and 2-year follow-up scans of 17 AD subjects (M/
F=5/12), 22 normal controls (NC; 13/9), 16 subjects that remain stable MCI (MCI-s; 11/5), and 
4 subjects convert to AD within a given timeframe (MCI-c; 2/2). This study found that the pro-
posed quantitative indicator provides well-behaving AD state estimates, corresponding well 
with the actual diagnosis.

Conclusion: 

According to the results, all of the test data have the trend that decreased over time. It has 



Neuropsychiatry (London)   (2016) 6(6)377

Research Jiann-Der Lee

detection and diagnosis of MCI and AD [11-
13].

Brain atrophy typically starts in the medial 
temporal and limbic areas, subsequently 
extending to parietal association areas and finally 
to frontal and primary cortices. Early changes 
in hippocampus, amygdala, and entorhinal 
cortex have been demonstrated with the help of 
MRI and these changes are consistent with the 
underlying pathology of MCI and AD. Methods 
based on volumetric measurements [14-16], or 
on visual rating scales [17] have largely been used 
to assess cortex atrophy. Hippocampal volumes 
and entorhinal cortex measures have been found 
to be equally accurate in distinguishing between 
AD and normal cognitive elderly subjects [18]. 
However, the segmentation and identification 
of hippocampus or entorhinal cortex are 
usually time-consuming and prone to inter-
rater and intra-rater variability. In addition, the 
enlargement of ventricles is also a significant 
characteristic of AD due to neuronal loss. 
Ventricles are filled with cerebro-spinal fluid 
(CSF) and surrounded by gray matter (GM) and 
white matter (WM). As a result, by measuring 
the ventricular enlargement, hemispheric 
atrophy rate shows higher correlation with the 
disease progression.

In addition to the atrophy of brain regions, 
neuropsychological assessment (NPA) has 
featured prominently over the past 30 years in 
the characterization of dementia associated with 
Alzheimer disease (AD) [19,20]. As research has 
increasingly focused on earlier stages of illness, it 
has become clear that biological markers of AD 
can precede cognitive and behavioral symptoms 
by years, such as Mini Mental State Examination 
(MMSE) [21] and Clinical Dementia Rating 
scale (CDR) [22], the Cognitive Abilities 
Screening Instrument (CASI) [23], trail making 
test A (TMT-A) and B (TMT-B) [24], etc.

Functional MRI (fMRI) is a neuroimaging 
technique that is presumed to directly link specific 
cognitive activity to neurophysiological changes, 
such as functional cerebral hemodynamics. 

Introduction

According to the report [1], thirty millions 
of people suffer from dementia and, as a 
consequence of the aging population, the 
number of people that will be affected is 
expected to double every 20 years. It is noted 
that the majority of dementia cases are caused by 
Alzheimer’s disease (AD). AD is a progressively 
neuro-degenerative disorder characterized by 
leading to deficit of cognitive functions, such 
as memory loss and cognitive degeneration, and 
behavioral impairment, resulting in declining 
quality of daily life [2]. Since AD is irreversible 
and there is no cure, current treatment focuses 
on lessening its symptoms. Therefore, how to 
diagnose AD accurately in early stage has become 
increasingly significant. Additionally, prediction 
of the conversion from Mild Cognitive 
Impairment (MCI) to AD is one of major topics 
in AD research. Mild cognitive impairment 
(MCI) is a transitional stage between normal 
aging and demented status. The syndrome is 
defined by the greater cognitive decline than 
other age and educational matched individuals, 
but no interference of daily function. According 
to the major symptoms, MCI is characterized 
with memory loss and cognitive impairment.

It is known that MCI has been associated with 
a risk for AD because of similar structural brain 
changes [3-5]. Therefore, detection of brain 
changes that reflect pathological processes of 
MCI would prevent or postpone degeneracy 
either from normal to MCI or from MCI to 
AD. If MCI can be diagnosed at early stage 
and effective intervened, then it is possible to 
reduce the advanced damages. To achieve this 
goal, various neuroimaging methods have been 
proposed to examine the predictive abilities 
with respect to AD and other dementia illnesses 
[6-10]. For example, single photon emission 
computed tomography (SPECT) and positron 
emission tomography (PET) are often used with 
the aim of achieving early diagnosis. However, 
under the consideration of imaging cost and 
non-invasive requirement, magnetic resonance 
imaging (MRI) has been widely used for early 

the potential to establish an effective decision support and data visualization framework for 
improving AD diagnostics, allowing clinicians to rapidly analyze large quantities of diverse 
patient data and as a screening measure and evaluated tool in therapeutic trials.
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In fMRI-based studies on the blood oxygen 
level dependent (BOLD) contrast, have shown 
that cognitively intact older individuals that 
demonstrate a greater degree of activation in 
many literatures [25-29]. Therefore, it appears 
that fMRI activation might be predictive of future 
cognitive decline during the prodromal stages 
of AD and MCI. The resting state functional 
MRI (rs-fMRI) of the brain is measured by 
spontaneous low frequency fluctuations in 
BOLD signal patterns across anatomical regions. 
A correlation of these low frequency fluctuating 
time courses, generated by their spontaneous 
activity, can be used to establish the degree of 
functional connectivity (FC) between regions. 
Examination of rs-fMRI connectivity might be 
an even more useful technique for observing the 
initial functionally related changes that occur 
in AD and prior to behavioral manifestations 
[30,31].

In clinical diagnosis, physicians often rely on 
subjective sense and experience to judge the type 
of disease and conditions, and therefore, prone to 
have different diagnostic results between different 
physicians. The derived diagnostic system can 
then be used either to assist the physician when 
diagnosing new patients in order to improve the 
diagnostic speed, accuracy and/or reliability, or 
to train students, physicians, non-specialists to 
diagnose patients in a special diagnostic problem. 
The most important mission of any diagnostic 
system is the process of attempting to determine 
and/or identify a possible disease or disorder and 
the decision reached by this process. For this 
purpose, machine learning algorithms are widely 
employed [32,33]. For these machine learning 
techniques to be useful in medical diagnostic 
problems, they must be characterized by high 
accuracy, the ability to deal with ambiguous 
cases, the transparency of diagnostic knowledge, 
and the ability to explain decisions. Previous 
studies have utilized different techniques such 
as principal components analysis (PCA), linear 
discriminant analysis (LDA), support vector 
machines (SVM), and orthogonal partial least 
squares (OPLS) for multivariate data analysis 
[34-39]. 

Generally speaking, there is no single test to 
determine if someone has dementia. Clinicians 
diagnose Alzheimer’s and other types of dementia 
based on a careful reading of the medical history, 
a physical examination, laboratory tests, and the 
characteristic changes in medical images, day-to-
day function and behavior associated with each 
type. Doctors can determine whether a person 

has dementia with a high level of certainty. But 
it is hard to determine the exact type of dementia 
because the symptoms and brain changes of 
different dementias can overlap. Therefore, in 
this study, we develop a prediction model to 
estimate the probability of dementia based on 
multivariate and learning vector quantization 
(LVQ) combined with probabilistic neural 
network (PNN). A single estimate reflecting 
the probability of dementia can provide a 
classification and positions the patient into a 
continuous space between the values -1 and 1, 
indicating a patient’s disease state in relation to 
previously known control (healthy) and positive 
(disease) populations. This makes it possible to 
assess the disease severity, i.e. it is not simply a 
yes or no diagnosis.

Methods

 � Participants

According to the research [40], most patients 
with AD were aged at 65 or older. Therefore, 
most of the subjects in the whole data we choose 
were ranged over 65 years old. The image data 
used in this study were provided by Chang Gung 
Memorial Hospital, Lin-Kou, Taiwan. The 
degree of clinical severity for each participant was 
evaluated by experienced clinicians conducted 
independent semi-structured interviews 
which included a set of questions regarding the 
functional status of the participant, along with a 
standardized neurologic, psychiatric, and health 
examination. This interview generates an overall 
Clinical Dementia Rating (CDR) and Mini Mental 
State Examination (MMSE) score. Demographic 
information is provided in Table 1.

 � Neuropsychological assessment 
features

Neuropsychological assessment is an evaluation 
of cognition, mood, personality, and 
behavior that is conducted by licensed clinical 
neuropsychologists. The most beneficial factor of 
neuropsychological assessment is that it provides 
an accurate diagnosis of the disorder for the 
patient when it is unclear to the psychologist 
what exactly he / she have. This allows for 
accurate treatment later on in the process because 
treatment is driven by the exact symptoms of the 
disorder and how a specific patient may react to 
different treatments. In the past, the researches 
[19-20] confirmed that NPA scores could 
provide more accurate and specific guidelines for 
the diagnosis of AD dementia and MCI due to 
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AD. In this study, each participant received the 
following neuropsychological measures.

(1) Memory: Wechsler Memory Scale-III 
(mainly Logical Memory and Visual 
Reproduction subtests) Word Sequence 
Learning Test, and Benton Visual 
Retention Test.

(2) Language: Object Naming Test and 
Semantic Association of Verbal Fluency.

(3) Visuospatial function: Three-
Dimensional Block Construction and 
Judgment of Line Orientation.

(4) Executive Function: Modified Card 
Sorting Test, Trail Making Test part B, 
and Color Trail Test.

(5) Attention: Trail Making Test part 
A, and Digit Span and Digit Symbol 
Substitution subtests of WAIS-III.

Detailed demographics and performance on 
standard neuropsychological tests of patient 
groups is listed in Table 2, a summary of the 
neuropsychological tests from all participants. 
Domains of cognitive functions are assessed, 
including memory, executive function, language 
and visual-spatial skills. Subjects with depression 
are excluded by using Hamilton Depression 
Scale for NC group and Cornell Scale for 
Depression in Dementia in patient groups (AD, 
and MCI). MCI: mild cognitive impairment; 
AD: Alzheimer’s disease; MMSE: Mini-mental 
State Examination; WCST: Wisconsin Card 
Sorting Test; SD: standard deviation.

 � Feature selection

To obtain the required features, a lot of image 
processing algorithms including segmentation 
and interpolation are used to obtain volume and 
shape features from magnetic resonance images 
(MRI). The whole-brain MRI scans are obtained 
by a 3-Tesla MR scanner (Magnetom Trio with 
TIM system, Siemens, Erlangen, Germany). T1-
weighted images are acquired by magnetization-
prepared 180 degrees radio-frequency pulses 
and rapid gradient-echo (T1-MPRAGE) series. 
The following imaging parameters are used: 
repetition time (TR)=2000ms, echo time 
(TE)=4.16 ms, and flip angle=9 degrees. The 
results are represented as a 224×256 matrix, and 
slice thickness=1mm in 160 slices. T2-weighted 
fluid-attenuated inversion-recovery (FLAIR) 
images are acquired to rule out concomitant 
neurological disorders. Imaging parameters of 
the T2 FLAIR sequence are used: repetition 
time (TR)=9000ms, echo time (TE)=85 ms, 
and inversion time (TI)=2500 ms. Number 
of slices=34, slice thickness=4 mm. The total 
acquisition time for both sequences is 6 minutes 
34 seconds. BOLD rs-fMRI data are acquired 
in four runs lasting four minutes each by means 
T2*-weighted echo planar imaging (EPI) free 
induction decay (FID) sequences applying the 
following parameters: TR=1671 ms, TE=35 ms, 
matrix size=64×64, field of view (FOV)=256 
mm, in-plane voxel size=4 × 4 mm, flip 
angle=75 degrees, slice thickness=4mm and 
no gap. Functional volumes are consisted of 
30 trans-axial slices. All subjects are asked 
to relax, stay awake, and don’t need to do 
anything [41].

More specifically, to obtain the volume feature, 
a set of MRI data was registered to a standard 
spatial coordinate system, i.e., Talairach 
coordinate system [42]. Therefore, each voxel 
is thus comparable with the other registered 
MRI or a reference template. The normalization 
herein is performed by using a 12-parameter 
affine transform and a Bayesian framework 
to a T1-weighted MRI template, provided by 
ICBM, NIH P-20 project [43]. The volumes of 
brain tissues such as GM, WM and CSF indicate 
important information, especially in brain 
degeneration diseases [44]. A clustering-based 
segmentation algorithm provided by SPM8 
[45] is adopted to extract GM, WM and CSF 
probability maps from the original MRI data. 
The value of each voxel in the corresponding 
probability map indicates the posterior of the 
voxel belonging to the tissue by giving its gray 

Table 1: Demographic data and cognitive scores.
Group Normal control MCI AD

Individuals (Male/Female)
Mean age (yrs)

Education time (yrs)
MMSE scores

40 (23/17)
63.85 ± 5.86
10.20 ± 4.30
28.43 ± 1.17

62 (26/36)
68.35 ± 6.36
7.31 ± 4.57

25.49 ± 4.24

28 (11/17)
69.43 ± 8.14
6.46 ± 4.98

16.11 ± 5.21

Table 2: Statistical data of neuropsychological assessment scores.
NPA score NC MCI AD

Mean Global score (SD)
MMSE (maximum, 30) 28.23 ± 1.30 25.10 ± 3.87 15.07 ± 6.34

Word sequence learning-recall 3.17 ± 1.93 0.45 ± 0.74 0.04 ± 0.20
Visual reproduction II 11.60 ± 3.09 8.57 ± 2.80 6.23 ± 1.86

Logic Memory II 11.60 ± 2.72 7.97 ± 3.72 3.15 ± 1.87
Semantic Assocation of Verbal Fluency 33.40 ± 6.82 29.57 ± 6.03 14.55 ± 6.20

WCST-S Completed Categories 5.20 ± 1.13 3.69 ± 1.77 1.88 ± 2.76
WAIS-III Digit Symbol-scaled 10.37 ± 2.55 9.52 ± 2.95 6.94 ± 2.71

WAIS-III Digit Span-scaled 11.30 ± 2.76 10.54 ± 2.65 7.67 ± 2.16
3-D Block Construction Models 28.6 ± 0.77 27.27 ± 3.1 18.41 ± 10.50

Object Naming Test 16.00 ± 0.00 15.97 ± 0.18 13.13 ± 3.65
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intensity. As a result, we can calculate the 
volumes of GM, WM, CSF and the whole brain 
by the following equations:

( ( | ( )) 0.5)GM gray
i I

volume P C f i
∀ ∈

≈ >∑                 (1)

( ( | ( )) 0.5)WM white
i I

volume P C f i
∀ ∈

≈ >∑              (2)

( ( | ( )) 0.5)CSF
i I

volume P C f i
∀ ∈

≈ >∑                    (3)

( ( | ( )) 0.5)Whole GM WM
i I

volume P C f i∨
∀ ∈

≈ >∑                (4)

where i is any pixel of the MRI data and f(i) stands 
for the gray level of i. Next, binary ventricle 
volume data, M(x, y, z), are extracted from MR 
images using a region growing algorithm with a 
threshold, which is estimated through a double 
threshold algorithm. After thresholding, the 
binary ventricle regions are obtained by using fill, 
erosion and dilation operations. The edges of the 
binary images are detected by Sobel operation on 
a slice-by-slice manner. The segmented region 
is then represented as a binary mask image M, 
where 1 stands for the ventricle pixel and 0 
stands for the non-ventricle pixel. Therefore, Eq. 
(5) is used to measure the cerebral ventricle, as 
shown in Figure 1 (a) and (b).

( ( | ( )) 1)Ventricle Ventricle
i I

volume P C f i
∀ ∈

≈ =∑         (5)

where i is any pixel of the mask data , M is mask 
image and f(i) stands for the gray level of i.

Since the volume features extracted from the 
whole 3-D volume cannot capture the variation 
of the anatomical shape, Wang [46] proposed a 
shape-based classification method to obtain 3-D 
and 2-D shape features. To obtain the feature of 
3-D shape, we used a leave-one-out method to 
construct training set and testing set. Three sets 
of probability map were then built by using Eq. 
(6) and as shown in Figure 2.

1

1( , , ) ( , , )
M

i
t t

i
P x y z I x y z

M =

= ∑                (6)

Where t indicates the type of the subjects, 
comprising normal, AD and MCI, M is the 
number of training samples, and I stand for the 
grey level of the ventricular mask image. Next, 
we obtained a discriminate map by subtracting 
the normal probability map from the patient 
probability map, as shown in Figure 2 (c). 
Lastly, a matching coefficient (MC) between a 
testing input and the discriminate map can be 
calculated using Eq. (7). Where D(x,y,z) is the 
discriminate map and T stands for the testing 
ventricular mask image.

, ,
( , , ) ( , , )i i

Normalorpatient Normalorpatient
x y z

MC D x y z T x y z
∀

= ∑ (7)

Through the above image processing algorithms, 
we obtained individual volume and shape 
features. The definition of shape features is 
listed in Table 3. In order to confirm whether 
there is a significant effect of the classification 
for these features, we use statistical one-way 
analysis of variance (ANOVA) to compare 
differences between three groups on various 
features (continuous variables). Initially, all of 
five volume features and eighteen shape features 
extracted individually from all participants are 
used in ANOVA test. Finally, three volume 
features and seventeen shape features as shown 
in Table 4 are retained. Although the features 
adopted have statistical significance (< 0.05) 
between three groups, some of features may be 
redundant or have highly correlation. Therefore, 
we employed the linear and nonlinear feature 
dimensionality reduction methods including of 
principal component analysis (PCA) [47] and 
Isomap [48] to achieve this goal. More details of 
these image processing algorithms can be found 
in [49,50]. 

 � Multivariate-based prediction model

The main aim of this study is to develop 
a comprehensive, integrated image and 
neuropsychological assessment scores prediction 
model, which would yield a single estimate 
representing the probability of dementia. Unlike 
other studies [51-53] using logistic regression 

Figure 1: (a) CSF binary map, (b) ventricle mask image, and (c) edges of (b).

Figure 2: (a) Probability of normal controls, (b) probability of patients and (c) discriminate map.
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to estimate the prediction model, we adopt 
learning vector quantization combined with 
probabilistic neural network to establish the 
desired prediction model. The proposed model 
does not calculate an optimal cutoff point that 
yields the best ratio between true positive and 
false negative, instead it will provide a continuous 
outcome to indicate the probability of dementia. 
Although a dichotomous outcome produced 
by different type of classifier would appear to 
make clinical diagnosing easier, it would loss 
important information. Moreover, identifying 
individuals with MCI at high risk of conversion 
to AD is of great importance to clinicians, the 
individuals, and their families and for selecting 
appropriate subjects for therapeutic trials. 

Therefore, this predictive model would also be 
useful as a screening measure in therapeutic 
trials by selecting subjects more likely to decline 
cognitively and functionally and thus be more 
likely to benefit from treatment. Here, prediction 
model was accomplished with LVQ-PNN and 
its detail is described as below.

Basically, the probabilistic neural network (PNN) 
represents a parallel implementation of a Bayes 
strategy for pattern classification. Bayes strategies 
for pattern classification rely on procedures that 
minimize the “expected risk” of misclassification. 
The main problem in using Bayes strategies for 
classification is the estimation of the probability 
density functions relative to each class. This task 

Table 3: List of shape features.
Shape features Description

Matching coefficient Similarity measure between each input dataand the discriminant map
Area Area of ventricle

Perimeter Perimeter of ventricle
Compactness Square of the perimeter divided by area

Elongation The ratio of height and width of a rotatedminimal bounding box covered whole ventricle
Rectangularity Area of ventricle divided by area of rotatedminimal bounding box

Symmetry The similarity between right and left ventricle
Axis shape descriptors The distances from ventricle’s centroid to four corner points

Minimum thickness The minimum distance between ventricle’s right side point set and left side point set
Mean signature value 1D expression of ventricle’s edge

Table 4: Statistical analysis of features.
Features Mean volume ± S.D.

Volume Normal MCI AD p-value
(NC vs. MCI)

p-value
(NC vs. AD)

p-value
(MCI vs. AD)

VGM
VWM
VCSF

873.6 ± 47.7
634.9 ± 37.5

849.4 ± 107.1

837.5 ± 63.1
599.3 ± 30.0

921.3 ± 131.6

792.8 ± 89.2
543.5 ± 79.1

988.2 ± 138.6

0.018
0.022
0.026

0.005
0.026
0.019

0.039
0.031
0.020

Features Mean value ± S.D.

Shape Normal MCI AD p-value
(NC vs. MCI)

p-value
(NC vs. AD)

p-value
(MCI vs. AD)

Area 1883.2 ± 267.4 1989.6 ± 374.5 2437.5 ± 655.0 0.029 0.032 0.035
Area (PR) 682.0 ± 119.7 876.3 ± 125.7 924.6 ± 176.8 0.023 0.014 0.029
Area (PL) 678.9 ± 125.0 878.2 ± 131.8 930.5 ± 181.9 0.030 0.017 0.031
Area (FR) 164.2 ± 121.5 245.3 ± 164.1 273.8 ± 182.7 0.023 0.011 0.034
Area (FL) 168.0 ± 93.1 262.3 ± 150.3 283.3 ± 179.8 0.031 0.018 0.030

Perimeter 231.4 ± 28.5 269.7 ± 24.0 291.6 ± 25.4 0.028 0.014 0.028
Circularity 47.2 ± 5.1 39.7 ± 3.1 37.5 ± 2.9 0.028 0.016 0.026

 Elongation 1.4 ± 0.7 1.3 ± 0.4 1.2 ± 0.3 0.019 0.006 0.024
Rectangularity 0.6 ± 0.1 0.7 ± 0.3 0.7 ± 0.2 0.028 0.024 0.037

d(A,G) 35.4 ± 1.8 38.0 ± 4.1 40.8 ± 4.4 0.040 0.029 0.044
d(B,G) 37.2 ± 2.5 40.6 ± 4.2 42.8 ± 5.3 0.029 0.032 0.040
d(C,G) 39.1 ± 3.8 42.3 ± 3.2 43.6 ± 4.2 0.041 0.034 0.042
d(D,G) 35.0 ± 2.3 38.1 ± 1.8 43.2 ± 3.7 0.022 0.022 0.030
d(A,C) 74.6 ± 5.0 81.2 ± 7.9 84.4 ± 8.3 0.009 0.010 0.021
d(B,D) 72.9 ± 5.1 79.4 ± 4.8 83.6 ± 8.4 0.017 0.005 0.023

Min thickness 26.7 ± 2.9 29.7 ± 2.3 31.4 ± 3.1 0.016 0.008 0.017
Mean Sig. 26.4 ± 3.0 27.4 ± 2.9 29.2 ± 3.7 0.037 0.021 0.047
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is usually accomplished by using a set of training 
patterns with known classification. A consistent 
estimate of a multivariate probability density 
function can be obtained by using the product 
of univariate kernels. In the particular case of the 
Gaussian kernel, the multivariate estimate of the 
probability density function of category A can be 
expressed as follows:

/2
2

1

1 1( ) exp[ ( ) ( ) / 2 ]
(2 )

m t
A Ai Aii

f X X X X X
mρ σρ σ

π =
= − − −∑ (8)

where i is the current pattern index, m is the total 
number of training patterns, XAi is the ith training 
pattern from category θA, σ is a smoothing 
parameter, and p is the dimensionality of the 
input space.

The structure of a typical PNN in the case of 
a two-category problem is shown in Figure 3, 
where the input layer consists of simple fan-
out units, and there is one pattern unit for 
each training pattern in the second layer. Each 
pattern unit performs a dot product of the 
input pattern vector X with a weight vector Wi, 
i.e., Zi=X·Wi and then performs the nonlinear 
operation:

2exp[( 1)] / ( )iZ ρ−                  (9)

Assuming X and Wi are normalized to one 
unit length, which is equivalent to each 
exponentiation of Eq. (8). The summation units 
(one each category) simply sum the outputs from 
all pattern units of the relative class. In the two-
category case there is one output unit and a two-
input unit, which produces a binary output with 
only a single variable weight C, defined as Eq. 
(10)

B B A

A A B

h l nC
h l n

=                (10)

where nA and nB are the numbers of training 
patterns from categories θA and θB, respectively. 
If the numbers of training samples from the 
different categories are in proportion to their 
a priori probabilities and class losses li do not 
reflect any bias in the decision, C may simplify 
to -1. The network is trained by setting the 
Wi, weight vector in one of the pattern units, 
equal to each X pattern in the training set and 
then connecting the pattern unit output to the 
appropriate summation unit. 

PNN possess a very good, Bayes-like 
classification performance. Unfortunately, 
if large training sets are available, the 
computational cost associated with the testing 
phase of the PNN is much higher than that of the 
training phase and will become incompatible 

with real time classification tasks. In order to 
overcome this inconvenience, learning vector 
quantization (LVQ) is employed here because 
it is computationally extremely light and 
the convergence is reasonably fast. Figure 4 
illustrates the flowchart of LVQ.

In summary, the modified version of the PNN 
proposed here maintains the basic structure of 
Figure 3, but the number of nodes assigned to 
each class in the second layer is no longer equal 
to the number of training patterns of that class; 
instead, it equals to the number of processing 
elements per class of the LVQ, as shown as 
Figure 5.

Here, the prediction model is accomplished with 
LVQ-PNN as described above. For each data 
point randomly selected from input space, the 
closest prototype (weight) is determined by Eq. 
(11):

( )j t t j jXµ α µ µ± − →               (11)

where μj is a set of prototypes, xt is a set of input 
vector, and αt is a learning ratio. Maximum 
likelihood of pattern X is computed by Eq. (12). 
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− − −
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where d denotes dimension of pattern X, σ is 
smoothing parameter, and Na denotes total 
number of samples in class a. After individual 
feature variables are used to calculate multivariate 
probability density function through Eq. (12), 
we selectively summarize the output calculated 
from pattern (hidden) unit. Summary unit that 
accumulate the output corresponding to the 
same kind of training samples, is determined by 
Eq. (13).

Figure 3: The probabilistic neural network (PNN).
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Finally, through the way of competition with 
each other and winner takes all to obtain the 
optimized output, defined as

j jii
S w u=∑                  (14)

where wji denotes ith connecting weight from jth 
neuron, u represents the input corresponding 
with wji. Then comparing the weighted sum 
of each competition unit, the one having the 
highest sum of the inputs is determined to be 
the winner. This single estimate represents the 
probability of dementia we hope to obtain. All 
estimates are reassigned to range [-1, 1].

Results and Discussion

Unlike previous approaches which employed 
machine learning techniques using data collected 
in one time slot to predict various AD stages, 
the statistical technique of longitudinal data 
analysis is used to compare certain variables of 
the same participants at different time slots. The 
longitudinal data are defined as the data resulting 
from the observations of subjects (human beings, 
animals, or laboratory samples, etc.) which are 
measured repeatedly over time [51-54]. The 
purpose of conducting a longitudinal study is to 
look at the change of treatments across a time 
period. That is, by collecting data over time, 
it can separate changes over time within an 
individual sample from the differences between 
subjects at baseline. Thus, these longitudinal 
studies can give tremendous information on the 
subjects. The main advantage of the longitudinal 
statistical design is the fact that the subject group 
stays the same, with its main goal to keep as many 
variables as constant as possible. Therefore, by 
analyzing and comparing within-group statistics 
in different time slots, we can find the differences 
in features over time.

In the experiments, we evaluated whether a 
quantitative indicator can be used as a screening 
measure for therapeutic trials or not. We tested 
the baseline, 1-year follow-up, and 2-year 
follow-up scans of 17 AD subjects (M/F=5/12), 
22 normal controls (NC; 13/9), 16 subjects that 
remain stable MCI (MCI-s; 11/5), and 4 subjects 
convert to AD within a given timeframe (MCI-c; 
2/2). 12 NCs (M/F=8/4), 8 patients with MCI-s 
(M/F=6/2), and 9 patients with AD (M/F=3/6) 
are included in the training cluster. The other 
data are assigned to the testing cluster. From 
the results, with volume and shape features, 
we observed that both MCI and AD patient 
groups exhibit significant statistical differences 
at different time-points, especially in the CSF 
volume, where there is a clear upward trend. 
Hence, all of seventeen features can be used to 
describe the change over time in this study. Same 
analysis methods are also used in NPA features. 
The performance of normal controls shows no 
significant differences. The MCI patients also do 
not exhibit significant differences in long-term 
research. But all of the NPA scores do reflect 
statistically significant differences in AD group 
over time. So, all of ten NPA features can be used 
to describe the change over time in this study. 
There are three volume features, seventeen shape 
features, and ten NPA features used in this study. 

Figure 4: The flowchart of LVQ.

Figure 5: The modified LVQ-PNN.
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We also added features of rs-fMRI, including 
twenty-two rs-fMRI (Z-score) features and ten 
VBM (F-score) features in the experiments. 
The rs-fMRI, which is a technique used to 
image intrinsic functional brain connectivity, 
is considered a promising biomarker for AD as 
functional brain changes are thought to precede 
structural brain changes. Many cross-sectional 
studies have found the differences of functional 
connectivity (FC) in the brain’s default mode 
network (DMN) between aging, MCI, and AD. 
In this study, we looked at the possible changes in 
FC occurring longitudinally over time, with the 
aim of assessing the potential usefulness of this 
technique as a biomarker for disease progression 
in these three groups.

The baseline and longitudinal changes of the 
PCC (posterior cingulate cortex) connectivity 
are assessed to clarify the neural mechanism 
of these three groups. In patients with AD, 
connectivity at baseline is decreased in the 
posterior default mode areas and increased 
in frontal regions in comparison with NCs. 
However, at follow-ups, patients show decreased 
connectivity throughout the entire DMN. These 
results suggest that within the DMN, hyper-
connectivity precedes hypo-connectivity of a 
certain brain region, and this may signal the 
early phase of brain dysfunction. It is also noted 
that the observed connectivity changes follow 
the trajectory of neuropathology which affects 
the medial temporal lobe first, followed by the 
posterolateral cortical regions and, in the latest 
stages, the frontal cortex. We observe that FC 
between the hippocampus and a set of regions 
that were disrupted in MCI, including of frontal 
lobe, bilateral temporal lobe and insular. Besides, 
the posterior cingulate cortex, precuneus, 
hippocampus, caudate and right occipital gyrus 
show increased connectivity to the hippocampus 
in MCI. Several regions showed decreased 
connectivity to the hippocampus over time. 
These longitudinal results may indicate reduced 
integrity of hippocampal cortical memory 
network in MCI.

We explore the whole brain’s condition of 
atrophy and to examine if it is altered in 
dementia by the course of time. In MCI 
patients progressing toward AD, atrophy has 
been observed, including of temporal, parietal, 
and frontal lobe. These regions are involved 
in a number of processes related to cognitive 
functions and memory retrieval. If they start 
to atrophy, in simple terms, imply they are 
suffering from dementia. These results suggest 

Figure 6: Predicted probability score of validation data set.

that when we make long-term following study, 
we can use these results as for important factors 
to predict the progress of disease and survival 
over time. In order to evaluate whether these 
multimodality features change over time can be 
used as a screening measure, a predictive model 
that adopts these features as input for analysis is 
necessary and helpful. 

Figure 6 shows the predicted probability of 
the validation data set. The visualization clearly 
discloses how predictors contribute to the AD 
state, facilitating a rapid interpretation of the 
information. We can find that the quantitative 
indicator provides well-behaving AD state 
estimates, corresponding well with the actual 
diagnoses. All test data have the trend decreased 
over time. We also can observe the score will be 
lower than 0.483 after suffering from dementia 
except for MCI patients. Comparing to the 
result obtained in a previous classification-based 
paper [49], it is observed that most of MCI 
patients has obvious discrimination with NCs. 
It is implied that these time-oriented features are 
useful to evaluate which of these cases belong to 
which group. Especially when comparing with 
other classification-based methods, this model 
does not require a physician’s gold standard, so 
it can allow clinicians to rapidly analyze large 
quantities of diverse patient data and assist in 
preliminary screening. 

Conclusion

In this study, we developed a comprehensive 
prediction model by integrating image and 
neuropsychological assessment scores to yield 
a single estimate representing the probability 
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of dementia. For a clinically meaningful 
interpretation, this estimate should not be 
interpreted on its own, but should be instead 
weighed against the previous probability of AD, 
which the clinician derives from interpretation 
by a combination of history taking, physical 
examination, neuropsychological evaluation, 
and neuroimaging. Theoretically, all these 
factors could be included in a prediction 
model. However, it is difficult to specify which 
items are significant. For example, history 
taking or neuropsychological testing should 
not be included because neither has reached 
any form of standardization. Therefore, 
learning vector quantization combined with 
probabilistic neural network is proposed to 
establish prediction model and provide a 
continuous outcome.

According to the results, we found that the 
quantitative indicator provides well-behaving 
AD state estimates, corresponding well with the 
actual diagnoses. All test data exhibit the trend that 
decreased over time. We hope that this indicator 
can provide clinicians a useful tool to rapidly 
analyze large quantities of diverse patient data and 
as a screening measure in therapeutic trials.
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