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ABSTRACT 

The development and function of nervous system is orchestrated by various growth factors, 
including neurotrophic factors. Among these are classical neurotrophins, which play 
important roles during foetal growth and development. Neurotrophins concentrations differ 
between preterm and full-term neonates; in fact, these differences may be clinically significant 
in the development of prematurity-related complications. Novel cellular therapies are aimed 
at providing stem/progenitor cells, able to produce beneficial neurotrophins, to the preterm 
infant in order to ameliorate detrimental effects of prematurity. In this review we focus on 
neurotrophins significance in preterm birth complications and their possible role in paracrine 
effects of stem/progenitor cells applied to preterm infants. 
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Introduction

With more than 100 billion neurons, human 
brain represents a massive network for 
information processing, storage and recall. 
The development and function of neurons is 
orchestrated by various growth factors, including 
neurotrophic factors. Among these are classical 
neurotrophins (NTs), the glial cell line-derived 
neurotrophic factor (GDNF) family of ligands 
(GDNF, neurturin (NRTN), artemin (ARTN), 
and persephin (PSPN)), and neuropoietic 
cytokines. The classical neurotrophin family 
comprises four structurally and functionally 
related molecules: nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), 
neurotrophin-3 (NT-3) and neurotrophin-4 
(NT-4) [1]. NTs play a key role in proper brain 
development and are important mediators of 
synaptic plasticity. Indeed, NTs, once released 

by target cells, regulate the type and the number 
of afferent synapses by promoting the survival of 
discrete neuronal subpopulations. They also exert 
antiapoptotic activities in both the peripheral 
(sympathetic and sensory) and the central 
(cholinergic, dopaminergic, adrenergic) neurons 
as well as play important roles in higher neuronal 
functions and neurotransmitter expression [2]. 

The effects of NTs are mediated through 
signalling by two distinct classes of neurotrophin 
receptors (NTRs): the p75 pan-neurotrophin 
receptor (p75NTR) and the Trk family of tyrosine 
kinases [3]. The latter consists of three members: 
TrkA, TrkB, TrkC, which preferentially bind to 
NGF, BDNF and NT-4, and NT-3, respectively 
[4,5]. Ligand binding to Trk receptors triggers 
activation of several intracellular signalling 
pathways, including ERK1/2, PI3K/Akt, Ras/
MAPK and phospholipase C pathways. Their 
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In our previous studies we showed that umbilical 
cord blood [UCB] transfusion to preterm infant 
results in beneficial increase in concentration of 
various growth factors, including NTs [11]. In 
this review we will focus on classical NTs clinical 
significance in preterm birth complications 
development. We will also focus on paracrine 
effects of stem/progenitor cells in regard to NTs 
and our novel cellular approach in preventing and 
ameliorating prematurity-related complications 
that our group has already successfully applied in 
previous clinical trials.

Role of Neurotrophins in the Development 

of Nervous System

Neuronal migration into the cortical mantle is 
largely complete by 25 weeks gestation, although, 
glial migration, that is mainly responsible for 
the expansion in cortical surface area, continues 
through the third trimester [19]. Brain cortical 
volume grows nearly fourfold between 29-35 
weeks of gestation and it is a critical period for 
neuronal growth and migration [20]. Infants 
born at this gestation period have decreased 
cortical gray and white matter at term equivalent 
– secondary to apoptosis and neuronal atrophy 
– that impacts long term neurodevelopmental 
outcomes [21].  Brain injury (e.g. IVH and 
periventricular leukomalacia) constitutes 
the main dramatic complication in the 
perinatal period, with a potential of long-term 
neurodevelopmental disabilities [22]. In this 
matter, the earlier the child is born the higher 
the risk of brain injury - recent estimates suggest 
that nearly 40% of children born preterm will 
experience some level of neuronal development 
impairment [23].  From very-low-birth-weight 
[VLBW] infants (born <32 weeks and with weight 
<1500 g), approximately 10% have motor deficits 
and up to 60% have neurocognitive disabilities 
and behavioural disturbances [22,24]. It has 
been shown that premature birth also increases 
neuronal injury caused by inflammation and the 
hypoxic ischemic process [25]. Significant brain 
injury, or more subtle impairments in brain 
development, may underlie the development of 
major disabilities, such as cerebral palsy, mental 
retardation, autism spectrum disorder, deafness, 
or cortical visual impairment in the preterm 
neonate [26]. 

Development of the brain and nervous system is 
orchestrated by neurotrophins [27]; differences 
in NTs concentrations in term versus preterm 
infants seem to reflect compromised CNS 

signalling cascades generally induce pro-survival 
and pro-growth cellular response [6]. p75NTR 
is the co-receptor that refines Trk affinity and 
specificity for NTs and augments Trk signalling. 
In the absence of Trks, p75NTR signals activate 
NF-κB, JNK, and modulate RhoA activity, 
which are related to cell survival, death and 
neurite outgrowth, respectively [3].

Neurotrophins are widely expressed in nervous 
system during development and adulthood, but 
they also function in other systems, like immune 
and reproductive [7]. The expression of NTs is 
increased after injury, thus they have emerged 
as promising extrinsic factors to augment 
nerve regeneration [8]. Because of their unique 
characteristics, NTs have also been studied for 
their potential use in treatment; various trials with 
NTs showed enhanced neuronal survival, axonal 
regrowth, remyelination and synaptic plasticity 
[9]. In our previous studies we have shown 
that not only do NTs regenerate the damaged 
neurons, but they are also vital in protecting 
the existing ones [10]. Our promising results on 
cellular therapy in preterm infants indicate that 
certain growth factors, NTs included, could act 
as a preventive modality against prematurity-
related complications [11]. 

Preterm birth (<37 weeks of gestation) remains 
the leading cause of perinatal mortality and 
morbidity throughout the world [12]. Thirty 
percent of babies who survive though born 
before the 29th week of gestation show 
neurological, visual and intellectual impairment 
[13]. Premature infants are at high risk of 
developing specific conditions and diseases; 
these include brain injury (e.g. intraventricular 
haemorrhage; IVH, periventricular 
leukomalacia; PVL), retinopathy of prematurity 
(ROP), bronchopulmonary dysplasia (BPD), 
neonatal respiratory distress syndrome (RDS), 
necrotizing enterocolitis (NEC) and anaemia 
[14]. Neurotrophins concentrations were 
shown to be correlated with prematurity-related 
complications, birth weight, gestational age, or 
preterm birth in general [15,16]. Since NTs cross 
the immature blood brain barrier of premature 
infants [17], their application could provide 
neuroprotective and neuroregenerative effects, 
possibly ameliorating detrimental prematurity-
related complications, like IVH. The angiogenic-
specific effect and neurotrophic activity of 
vascular endothelial growth factor (VEGF) also 
makes this trophic protein an attractive target for 
improving regenerative processes in a damaged 
central nervous system [18]. 
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development and early brain injury related 
to prematurity. Moreover, alterations in NTs 
expression can produce long lasting effects 
on neurotrophic processes (neurons/synapses 
numbers), which affect neuronal maturation and 
plasticity in later life [28].

Nerve growth factor, the first neurotrophin ever 
described, has long occupied a central position 
in developmental biology because of its action 
during a period of programmed cell death in 
embryonic and early postnatal life [29]. NGF 
is synthesized and secreted by sympathetic and 
sensory target organs, then it is captured in nerve 
terminals by receptor-mediated endocytosis 
and is transported through axons to neuronal 
cell bodies, there it acts to promote neuronal 
survival and differentiation [9,30]. NGF\TrkA 
knockout mice present with virtual absence 
of the superior cervical ganglia neurons by the 
first postnatal week, confirming the critical role 
of NGF\TrkA signalling for the development 
of sympathetic neurons [31]. Although the 
role of NGF in developing brain is established, 
there are limited studies examining NGF levels 
in preterm infants. In the amniotic fluid NGF 
has been reported to raise with gestational age, 
additionally NGF levels in umbilical cord blood 
and plasma of preterm infants were significantly 
lower comparing to babies born at term [32]. 
According to Marx et al., low plasma NGF levels 
may be markers for the presence of either CNS 
abnormalities or infectious insults in utero or 
both [33]. Similarly, circulating BDNF reflects 
the degree of neuronal maturity in neonates 
[34], since, at this age, due to the immature 
blood-brain barrier, neurotrophin blood levels 
may also represent concentrations in the CNS. 
BDNF induces the growth and development of 
the central nervous system and is required for the 
survival of some primary sensory neurons during 
foetal development [35]. Umbilical cord blood 
BDNF concentrations increase with gestational 
age; low levels of BDNF in umbilical cord blood 
may indicate higher risk of neurodevelopmental 
complications, they may also be useful in 
predicting BDNF levels in the neonate and 
providing important clues for brain injury 
prevention [34,36]. NT-3 and NT-4 have been 
documented to act at early stages of neuronal 
development and to decrease after hypoxia-
ischaemia [37]. Studies have demonstrated the 
importance of NT-3 in the development of the 
CNS; for example, mice deficient in NT-3 lack 
proprioceptive and subsets of mechanoreceptive 
sensory neurons [38]. NT-3 plays an important 

role in the development of both the neural-
crest-derived peripheral nervous system and the 
central nervous system [39] and NT-3 levels are 
significantly decreased in preterm birth [40]. 
NT-3 mediates almost all neuron survival and 
differentiation-promoting activities; it diminishes 
neuronal loss, supports axonal elongation, and 
promotes angiogenesis and neurogenesis [9]. 
NT-4 binding to the TrkB receptor corresponds 
with the onset of neurogenesis in the neural tube 
during brain development [41]; NT-4 levels were 
found to be declined after preterm delivery [42].

Although the function of NTs in the developing 
nervous system contributes to the neurotrophic 
support of various neuronal populations, 
NTs mediate an extraordinary range of other 
functions, which are not amenable to simplified 
generalizations. During development, as has 
been shown experimentally, any manipulation 
that interrupts the flow of these neurotrophic 
factors, leads to the massive death of the affected 
neuronal pool [43]. Compromised neuronal 
development in preterm infants is reflected in 
altered neurotrophins expression, but NTs could 
also have a causative role in prematurity-related 
complications that expand beyond those strictly 
CNS-related ones. 

Preterm Birth Complications: Clinical 
Significance of Neurotrophins

The cause of the prematurity complications is 
multifactorial and includes common pathogenic 
mechanisms such as ischemia/reperfusion 
and infection/inflammation, which promote 
the production of free radicals causative of 
oxidative stress. This leads to tissue damage 
and/or simplification, cell developmental arrest, 
scarring, fibrosis and in premature infant these 
detrimental effects are further enhanced by 
deprivation of protective maternal and placental 
factors and immaturity of the immune system 
[44]. Despite recent advances in neonatal 
intensive care medicine, intraventricular 
hemorrhage (IVH) remains a major cause of 
mortality and neurologic disability in premature 
infants, with few clinically effective treatments 
[45]. The pathogenesis of IVH is ascribed to the 
intrinsic fragility of germinal matrix vasculature 
- it exhibits accelerated angiogenesis, which 
orchestrates formation of nascent vessels that lack 
pericytes, display immature basal lamina low in 
fibronectin, and have astrocyte endfeet coverage 
deficient in GFAP [46]. Since angiogenesis holds 
a prominent role in the pathogenesis of IVH (and 
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other prematurity-related complications), not 
only neurotrophins are regarded as crucial, but so 
is VEGF. Data demonstrate that the developing 
brain responds to chronic sublethal hypoxia 
with increases in permeability and angiogenesis 
and suggest that VEGF mediates this response 
[47].  In animal models, antagonism of VEGF 
decreased the occurrence of brain haemorrhage 
[48], but the exact role of VEGF in IVH in 
preterm neonates is yet to be clarified. 

Neurotrophins act together with VEGF to 
enhance brain repair after hypoxia and/or 
ischemia. Here, particularly significant role 
is attributed to BDNF. In 2017 Ahn et al. 
suggested that BDNF secreted by transplanted 
mesenchymal stem cells might be a critical 
paracrine factor mediating their neuroprotective 
effects after severe IVH in the newborn rats [49]. 
In particular, the group attributed protective 
role against severe IVH-induced injury to 
BDNF downstream cell signalling involved in 
cell survival and significantly reduced neuronal 
death both in vitro after excitotoxic insults 
and in vivo after focal ischemia and bacterial 
meningitis. Thus, anti-inflammatory and 
antiapoptotic effects might be other potential 
neuroprotective mechanisms of BDNF. The 
lower levels of umbilical cord BDNF and NGF 
in preterm pregnancies may provide clues to 
predict cognitive deficits in children: preterm 
infants who develop moderate or severe peri/
intra-ventricular haemorrhage [P/IVH] have 
lower umbilical BDNF levels than those with 
mild P/IVH or no cerebral injury [27]. 

Children born preterm are at higher risk 
for visual impairment due to cerebral visual 
impairment, which is caused by damage to 
the geniculocalcarine pathways, and is related 
to the severity of white matter injury [50,51]. 
Nowadays, retinopathy of premature [ROP] is a 
leading cause of childhood blindness worldwide 
[52]. ROP proceeds following an initial phase 
of degeneration of the retinal microvasculature 
(vaso-obliteration) that is associated with 
cessation of progression of vascular growth 
toward the retinal periphery resulting in 
ischemic retina. In the subsequent phase of the 
disease, the ensuing retinal ischemia predisposes 
to abnormal compensatory neovascularization 
[53]. Various risk factors have been linked to the 
development of ROP include low birth weight, 
low gestational age, supplemental and oxygen 
therapy [54]. Although NTs are heavily involved 
in growth, survival, proliferation, and migration 
of neurons in the developing brain and retina, 

there are limited data whether premature birth 
and development of ROP is associated with 
alteration in neurotrophins.  It is recognized 
that neural factors provide guidance cues for 
both neurons and vascular cells, suggesting the 
importance of neurovascular interactions in 
retinal and vascular development [55]. The role 
of BDNF in ROP is supported by a recent study 
that examined single nucleotide polymorphism 
in a large cohort of premature infants with levels 
of ROP severity: two intronic variants in BDNF 
gene (rs7934165 and rs2049046) were associated 
with severe ROP [56]. BDNF is expressed in the 
visual cortex and retina during development and 
plays an important role in development of visual 
plasticity. It was noted that BDNF concentrations 
were decreased in infants who developed ROP 
and trended lower in those with more severe 
ROP [15]. Association between ROP and lower 
levels of NT-4 was observed as early as postnatal 
day 3 (D3), it continued to be low on D7 [57]. It 
is hypothesized that lower serum concentrations 
of BDNF and NT-4 in infants with ROP 
compared to infants without ROP may perfectly 
reflect glial and neuronal loss associated with 
ROP [57]. BDNF and NT-4 play a role in the 
regulation of intraocular inflammation [57] and 
they have been demonstrated to promote retinal 
ganglion cell survival after injury [58].

Angiogenesis is one of the crucial 
pathophysiological processes for both IVH and 
ROP. In fact, it seems that the vascular system 
links most, if not all prematurity complications 
[59,60]. The fragility of underdeveloped vascular 
system is a point from which the organism tries to 
escape by means of, rather chaotic, angiogenesis 
[61]. During the embryonic development, vessel 
formation and maturation is a very dynamic 
process, involving numerous growth factors, 
including neurotrophins that cooperate with 
one of angiogenesis’ ‘master regulators’, VEGF 
[62,63]. BDNF and NGF play an important 
role in the regulation of angiogenesis in tissues 
[64,65], in fact circulating BDNF may be 
secreted by vascular endothelial cells [66] and 
is involved in VEGF expression regulation 
[67]. NGF acts as an angiogenic factor by 
contributing to the maintenance, survival and 
function of endothelial cells by autocrine and/
or paracrine mechanisms. NGF, BDNF and 
NT-3 might have the potential to greatly increase 
angiogenesis in pathological situations [68]. One 
of the possible mechanisms for angiogenesis 
through neurotrophins could be that BDNF/
NGF-TrkB/TrkA signaling cascade increases 
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hypoxia-inducible factor 1-alpha (HIF-1α) and 
may regulate VEGF through mitogen-activated 
protein kinases/extracellular signal-regulated 
kinases (MAPK/ERK) and protein kinase B 
(PKB) pathways in the placenta in very early 
pregnancy [69]. 

Pathogenesis of prematurity-related disorders 
is not limited to angiogenesis only, but other 
pathological processes also provide a link 
between preterm birth complications. In fact, 
BDNF serves as a connection between neonatal 
lung injury and motoneuron survival. In 
cultured rat embryonic motoneurons, BDNF 
has been shown to support motoneuron survival 
by preventing neuronal nitric oxide synthase 
(NOS) expression [70]. Moreover, not only 
does BDNF appear to down-regulate NOS 
expression, but exogenous NO administration 
clearly inhibits BDNF secretion in embryonic rat 
hippocampal neurons. BDNF/NO interactions 
may also contribute to airway homeostasis in 
the developing respiratory system and modulate 
lung injury responses [71]. BDNF can enhance 
Ca2+, cell proliferation, migration and airway 
remodelling in general. These processes are 
equally important in the developing airway, 
perhaps more so given that a stiffer, thicker airway 
can lead to severe respiratory decompensation 
in children. Use of antenatal steroids (ANS) 
for pulmonary maturation is associated with 
improved neurodevelopmental outcomes in 
preterm infants. ANS mediated neuroprotection 
may be through increased BDNF synthesis or 
alternately, neuronal maturation following ANS 
may result in increased BDNF concentrations 
[42]. Increasing evidence from studies of airway 
hyper reactivity in asthmatic patients suggests 
that also NGF may serve as a link between airway 
inflammation and airway hyper responsiveness. 
In infants with respiratory syncytial virus 
infection who are highly predisposed to airway 
hyper reactivity elevated levels of NGF were 
found [71].

It has been suggested that in preterm infants 
growth factors balance is skewed toward 
inflammation; there is evidence that many 
of the long-term problems that account for 
much of the morbidity of prematurity are 
inflammatory in nature [72]. One of them is 
necrotizing enterocolitis (NEC), in which NTs 
seem to also play a vital part. Neurotrophins 
are likely to be among the factors that influence 
the differentiation and phenotypic expression 
of precursor crest-derived cells in the gut [73]. 
There is evidence for the presence of functional 

neurotrophin receptors in the developing 
enteric nervous system [74]. NT-3, the most 
abundant neurotrophin in the nervous system 
during early phases of development, is the most 
relevant for developing enteric nervous system, 
where it acts simultaneously with GDNF [75]. 
Experimental studies have shown the protective 
effect of GDNF and ciliary neurotrophic factor 
(CNTF) in enteric neuronal survival, which 
seem to cooperate with classical neurotrophins 
in pathological and physiological states of gut 
development [76]. NGF has been shown to act 
as an inflammatory mediator associated with 
functional activities of cells that include immune 
and endocrine systems [29]. Umbilical cord 
blood NT-3 levels were significantly decreased 
in the presence of placental inflammation [77]. 
In both animal and human models, BDNF 
concentrations are decreased in subjects exposed 
to prenatal stress and infections [78].  

Clinical significance of neurotrophins in 
prematurity-related complications is not limited 
to CNS only, but they play a role in angiogenesis, 
inflammation and probably a vast spectrum of 
other, still not fully elucidated, pathological 
processes which underlie the development of 
detrimental disorders that preterm infants are 
facing.

Stem/Progenitor Cells in Premature 
Infants

Because the available treatment options for 
prematurity-related complications are still quite 
limited, the vista of using stem/progenitor cells 
(SPCs) for tissue repair is seen as big hope for 
immature preterm infants among perinatologists. 
Preterm infants are quite unique when it comes 
to SPCs, as the number of circulating SPCs 
has been correlated with prematurity-related 
complications and UCB from preterm babies 
seems to be a particularly good source of 
SPCs. In the next chapter we will discuss the 
circulating SPCs and their paracrine effects and 
the novel cellular approaches which our team has 
successfully applied in various clinical trials.

Circulating Stem/Progenitor Cells

Stem/progenitor cells (SPCs) are able to give 
rise to multiple cell types and are widely used 
in regenerative medicine. The cell membrane 
protein CD34 is an important marker of early 
SPCs, and the CD34+ cell population is thought 
to comprise early hematopoietic SPCs and 
endothelial progenitor cells [79]. 
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Evidence suggests that a portion of SPCs 
circulates in the peripheral blood to maintain 
a balance between SPCs populations in various 
anatomic areas of the living organism [80]. The 
number of these cells increases during organ 
and tissue injury, e.g. heart infarct, stroke, 
heavy burns, or liver or skeletal muscle damage. 
During prenatal development, various types of 
stem cells migrate, proliferate and differentiate 
to form tissues and organs. Tissue and peripheral 
blood SPCs pools are in dynamic equilibrium 
with each other, allowing stem cells to migrate 
between extravascular sites or marginal pools 
and the circulation. We have recently shown 
that the number of primitive SPCs circulating 
in UCB is a valuable predictor of prematurity 
complications in preterm newborns [81]. 

Also a population of bone marrow (BM) derived 
circulating early and late endothelial progenitor 
cells (EPCs) is inversely associated with the 
Apgar score of preterm infants [82]. As we have 
shown, high number of circulating early-EPCs is 
associated with higher risk of RDS, ROP, BPD, 
and infections in newborns, however, the number 
of circulating EPCs is not an independent predictor 
of prematurity complications [83]. The number of 
circulating EPCs in full-term infants was maintained 
at a constant, relatively low-level, what may 
result from the maturation of organs undertaking 
adequately their physiological functions. On the 
contrary, EPC concentration gradually decreases 
in preterm infants over time [84,85]. The 
elevation of VEGF expression in preterm infants 
may contribute to an increase in the number of 
circulating EPCs and physiological development of 
vascularised organs [86]. SPCs migration is mediated 
by VEGF, SDF-1, and HGF, the most important 
chemotactic factors critical for stem cell motility, 
homing, and mobilisation; their concentrations in 
UCB are significantly lower in preterm than in full-
term infants [87]. Data are accumulating that EPC 
enumeration represents a viable strategy for assessing 
the regenerative capacity of the vascular system [88]. 
Therefore, a higher concentration of these cells in the 
UCB of preterm infants, reflects the prematurity of 
the infants’ vascularised organs, but also opens up a 
possibility of UCB use for cellular therapy, which will 
be discussed later.

Paracrine Effects of Circulating Stem/ 
Progenitor Cells

One of the easily accessible and quite attractive 
sources of unique SPCs with immature 
characteristics is umbilical cord blood [89]. The 

beneficial effects of stem cell-based therapy may 
be based on the trophic activity of SPCs, which 
produce various cytokines, including NTs, 
regulating growth, differentiation, and migration 
of neural SPCs. Numerous studies suggests that 
UCB cell-induced neuroprotection involves 
anti-inflammatory and immunomodulatory 
effects, and that neurotrophic factors act 
through paracrine and autocrine interactions 
between transplanted cells and the neural 
microenvironment [90-92]. We have recently 
shown that CD34+ SPCs express NTs (BDNF, 
NT-3, NT-4, NGF) and VEGF at higher levels 
than unsorted nuclear cells (NCs) [79]. Apart 
from classical NTs, three SPC populations 
(lineage-negative, CD34+, CD133+) also 
express the neuropoietic cytokines CDNF, 
MANF, and PEDF. These cytokines demonstrate 
neuroprotective qualities, similarly to VEGF, 
which has angiogenic and neurotrophic activities. 
UCB-derived SPCs also possess the neurotrophin 
receptors p75NTR, TrkA, TrkB, TrkC, GRFa1, 
and GFRa2 at the transcriptional and post-
transcriptional levels [94]. Neurotrophin 
receptors could be involved in the recruitment 
of SPCs to specific sites, like is a case with 
BDNF and TrkB. Production of various growth 
factors (including NTs) by UCB-derived SPCs 
can be increased by exposure of these cells to 
stress conditions [71], a phenomenon which 
our group decided to apply in cellular therapy 
for neurodegenerative disorders. As lineage 
negative [Lin−] cells exposed to stress conditions 
(short-term serum-free culture) show enhanced 
NTs production, this suggests using “stressed” 
Lin- cells for their enhanced neuroregenerative 
and neuroprotective role. Therefore, we are now 
conducting a trial in which Lin- transplantation 
to non-optimal microenvironment [cerebrospinal 
fluid] might boost NTs production and be 
clinically beneficial; initial results of our study are 
encouraging (manuscript in preparation). It has 
been also suggested that short-term priming by 
BDNF may enhance the trophic activity of SPCs 
[95,96]. The influence consists of diminishing 
apoptosis in these cells, modulating antioxidants 
and increasing NT-3 expression. These findings 
support the hypothesis that pre-treatment of SPCs 
could be beneficial and may be used as an auxiliary 
strategy for improving the properties of SPCs.

Novel Approach of Adjuvant Cell Therapy 
in Immature Preterm Babies

Independently of the cause of preterm labour, the 
infant within seconds sustains a substantial loss 
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of blood and its components, as 50 % or more of 
his blood volume with circulating SPCs pool is 
removed with umbilical cord and placental blood 
vessels [81]. Due to more advanced, physiological 
development, the cord blood and placenta of full 
term infant contain approximately 23-27% more 
total blood volume with relatively lower SPCs 
numbers [97]. We have shown that preterm 
UCB has significantly greater number of SPCs 
with increased clonogenicity and earlier cellular 
differentiation compared to full term UCB [98]; 
this has provided new treatment possibilities 
that could be of great importance during the 
neonatal period. Although cell-based therapy 
is relatively novel approach to the treatment of 
prematurity complications, our encouraging 
initial experience together with new data derived 
from novel animal studies widen the horizons for 
this innovative strategy [11,99-101]. 

We have proposed to replace SPCs lost during 
delivery by applying autologous whole UCB 
transfusion in the first days after birth. This 
technique might provide a cocktail of soluble 
proteins (including neurotrophins) and restore 
the initial number of SPCs that provide 
paracrine effects, resulting in the reestablishment 
of physiologic conditions for newborn organ 
development [101]. Clinical outcomes of 
our study are encouraging - autologous UCB 
infusion was no less effective and no less safe 
than allogeneic RBC transfusion. We have also 
designed a collection bag system, which makes 
UCB collection easier [102]. Our most recent 
study showed that the array of neurotrophins and 
growth factors produced by UCB cells is a major 
advantage of UCB over RBC transfusion [11]. We 
believe that further studies on larger cohorts of 
infants are necessary to fully elucidate all benefits 
and possible drawbacks of UCB transfusion. 
Because most prematurity complications result 
from underdeveloped vascular and nervous 

system, if autologous UCB transfusion results 
in increased concentrations of growth factors 
involved in angiogenesis, angiopoiesis, and 
neovascularisation, early administration of UCB 
to preterm infants could be valuable preventive 
treatment. It might compensate for the anaemia, 
but also provide vital growth factors, which 
prevent otherwise chaotic angiogenesis and play 
a role in neuroprotection and neuroregeneration. 

Conclusion

Neurotrophins promote survival and reduce 
apoptosis in many populations of neurons, 
they also play essential roles in axon growth 
during development, higher neuronal 
functions, morphologic differentiation and 
neurotransmitter expression. NTs are also 
involved in preterm birth complications and 
could be used therapeutically, as they augment 
neuroprotection and neuroregeneration. 
Neurotrophins action is not limited to neuronal 
tissue, as their role in angiogenesis and 
inflammation has also been proposed. Abrupt 
removal of maternal passage and placenta sources 
could cause the sharp decline in NTs levels after 
birth. Novel cellular approaches involving the 
use of stem/progenitor cells producing various 
growth factors, including neurotrophins, 
are emerging to prevent prematurity-related 
complications. Further research is needed to 
elucidate neurotrophins’ role in physiology and 
pathology, in order to warrant better therapeutic 
and preventive options for prematurity-related 
complications.
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