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Abstract
Neuroactive steroids (rapidly acting steroids that act as allosteric modulators of 
neurotransmitter receptors such as the ɣ-aminobutyric acidA (GABAA) receptor and the NMDA 
glutamate receptor) are involved in brain development and have been proposed to be 
important in the etiology and/or pharmacotherapy of a number of psychiatric and neurologic 
disorders, but there is limited information available on their association with autism spectrum 
disorders (ASD). This paper reviews the possible involvement of neuroactive steroids (NASs) 
and some related steroids, including testosterone, androstenedione and estradiol steroids in 
the etiology of ASD. NASs include progesterone, pregnanolone, pregnenolone, pregnenolone 
sulfate, allopregnanolone, tetrahydrodeoxycorticosterone (THDOC), dehydroepiandrosterone 
(DHEA) and DHEA sulfate (DHEAS). Studies on the levels of NASs and related steroids in blood, 
urine, saliva, and amniotic fluid in ASD are also reviewed. The results on plasma levels of NASs 
in ASD reported in the literature are generally inconclusive, probably because of differences 
among studies in terms of experimental design and factors such as age, gender, number of 
subjects, and medication being taken and differences in time of day at which samples are 
taken and storage conditions of samples. Future studies on levels of NASs in ASD should 
include careful consideration of the factors mentioned above, the possible advantages of 
saliva sampling and the use of assay procedures that provide simultaneous analysis of levels 
of a large number of these steroids. 
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Introduction

Autism spectrum disorders (ASD) are characterized 
by impaired social communication skills combined 
with restrictive/repetitive behaviors [1]. ASD occur 
in all ethnic groups, and there are different levels 
of severity. Previous studies have estimated that the 
prevalence of ASD is about 1%, and it is on the rise 
in the worldwide [2-4].

Some investigators view ASD traits as 
manifestations of an “extreme male brain (EMB)” 
[5]. The theory of EMB is the extension of the 
theory of empathizing-systemizing (E-S) which 
is a typical psychological sex difference. Evidence 
suggests that females have a greater drive to 
empathize and males have a stronger drive to 
systemize [5], and consistent with the theory 
of EMB, ASD subjects demonstrate a stronger 
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suggests that this is the case with ASD. Although 
some controvery remains, excessive glutamatergic 
activity and reduced GABAergic activity have 
been proposed in ASD [17-19]. Allopregnanolone, 
THDOC, pregnanolone, androstanediol and 
progesterone are positive modulators at the GABAA 
receptor, DHEA and pregnenolone are positive 
modulators at the NMDA receptor and DHEAS 
and pregnenolone sulfate are negative modulators at 
the GABAA receptor and positive modulators at the 
NMDA receptor [16,20]. Thus future comprehensive 
studies on NASs in ASD are warranted.

The term neurosteroids is used for NASs that 
are synthesized from cholesterol de novo in 
the brain [15] or formed by metabolism in the 
brain from precursor compounds coming from 
endocrine sources [11,16]. Numerous studies 
have shown that NASs have neurotrophic and 
neuroprotective properties and play a role in the 
development of the nervous system but also in 
some neurodevelopmental pathological processes 
[15,21,22]. Neuroactive steroids appear to play a 
role in the etiology and/or pharmacotherapy of 
several psychiatric and neurological disorders, 
such as depression [23-27], Alzheimer’s disease 
[21,28-30], schizophrenia [31-36], anxiety 
disorders [35-38], bipolar disorder [39-42] and 
post-traumatic stress disorder (PTSD) [43-44].

Several studies have proposed abnormal 
metabolism and/or levels of steroids in ASD, 
particularly in adolescents with ASD. While 
the causes of these anomalies may be manifold, 
steroids which participate in the development 
of the brain and control many brain functions 
are likely to play a role in the pathogenesis and 
clinical/behavioral manifestations of ASD [45]. 
This paper is a review of the possible involvement 
of NASs and related steroids in ASD and also 
includes a review of studies that have been done 
on levels of NASs and related steroids in blood, 
urine, saliva, and amniotic fluid in ASD. PubMed 
was scanned using the headings Steroids in Autism 
and Neuroactive Steroids in Autism. The references 
listed were reviewed in detail and narrowed down 
to those related directly to the NASs indicated here 
in the text as well as some other steroids that are 
related to NASs metabolically and/or functionally.

Neuroactive Steroids and Related Steroids 
in ASD 

 � Testosterone

Testosterone (T), a metabolite of DHEA, plays an 
important role in the growth and differentiation 

drive to systemize but are impaired on tests of 
empathizing [6,7]. Schwarz et al. [8} indicated 
that their finding of elevated serum levels of 
testosterone (T) should just be T in Asperger’s 
Syndrome adult females compared to controls 
supported the EMB theory. Sarachana et al. 
[9] showed that male and female hormones are 
different in regulating the expression of a novel 
autism candidate gene which is retinoic acid-
related orphan receptor-alpha (RORA) which is 
a nuclear hormone receptor and a transcriptional 
regulator. These authors and their colleagues have 
found a reduction of RORA transcript and/or 
protein levels in lymphoblasts and postmortem 
profrontal cortex and cerebellum taken from 
ASD subjects, and that testosterone (T) and 
estradiol exert positive and negative feedback 
regulation of the RORA gene respectively [10], 

suggesting that RORA may influence the male 
bias of ASD. Further, an isoform of RORA 
protein in human brain, namely RORA1, appears 
to regulate a number of ASD-associated genes 
involved in neuronal function, synaptogenesis, 
plasticity, cognition and spatial learning.

Steroid hormones are generally synthesized 
from cholesterol in the gonads and adrenal glands 
[11] and the main metabolic enzyme is P450 
side-chain cleavage enzyme (P450scc). These 
hormones can then pass through the blood-brain 
barrier to reach the brain [12], an organ in which 
they have important roles in the development, 
growth, maturity and differentiation. There has 
been a great deal of interest in recent years in 
neuroactive steroids (NASs), which have the 
capability of rapidly modifying neural activities 
[13]. NASs produce rapid, nongenomic effects 
in the brain, primarily through actions on 
ligand- or voltage-gated channels. They thus 
differ from classic steroid hormones which act 
mainly on intracellular receptors, producing 
long-lasting genomic effects. The NASs 
include dehydroepiandrosterone (DHEA), 
DHEA sulfate (DHEAS), progesterone, 
tetrahydrodeoxycorticosterone (THDOC), 
pregnanalone, allopregnanolone, pregnenolone 
and pregnenolone sulfate [14-16]. Most of 
the research focus on NASs has been on their 
interaction with ɣ-aminobutyric acidA (GABAA) 
receptors and N-methyl-D-aspartate (NMDA) 
glutamate receptors. A delicate balance between 
the excitatory neurotransmitter glutamate and the 
inhibitory neurotransmitter GABA (E/I balance) 
exists in normal brain function. This balance 
is often distributed in several neuropsychiatric 
disorders and considerable recent research 
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of genital and extragenital organs. It induces 
masculine features, affects the early development 
of the central nervous system (CNS) and behavior, 
and induces secondary sex characteristics and 
sexual development [46-47]. The levels of T 
change with age, different development stages, 
medication, diseases and stress [48]. Lutchmaya 
et al. [49] proposed that the ratio of 2nd to 4th 
digit length (2D:4D) and the fetal testosterone 
(FT)/fetal estradiol (FE) ratio have a significant 
negative relationship which is independent 
of sex. Baron-Cohen et al. [50] followed 58 
children from fetus to 4 years old and found that 
the FT levels in amniotic fluid are negatively 
related to the quality of social relationships when 
considering the sex differences; FT was found to 
be positively related to boys’ restricted interests. 
Auyeung et al. [51] showed a significant positive 
association between FT levels and autistic traits 
in 18 to 24-month-old children. All of these 
studies provided evidence suggesting that T 
plays a role in the pathophysiology of ASD. 
Moreover, some studies suggested that as a male 
sex hormone, T can play a role in the complex 
etiology of aggressive behavior in prepubertal 
and postpubertal ASD [52,53].

Geier and Geier [54] reported that compared 
with the typical reported reference ranges, serum 
levels of T and DHEA in prepubertal ASD 
are significantly increased. These researchers 
studied a group of 70 ASD subjects (mean 
age=10.8 years) and found that serum levels 
of total T, free T，% free T and DHEA were 
significantly increased compared to age- and 
sex-matched typical laboratory reference 
ranges. In a large sample of males, Schmidtova 
et al. [55] showed that the saliva levels of T in 
prepubertal and pubertal ASD are significantly 
increased over those in healthy controls (HCs). 
Schwarz et al. [8] reported that the serum levels 
of T in ASD females are significantly increased 
compared to control females. Xu et al. [56] 
showed that compared to mothers of typical 
children, plasma levels of T were increased in 
mothers of ASD children, and suggested that 
there is dysregulation of T systems in mothers of 
ASD children which may influence the children’s 
susceptibility to ASD. However, Croonenberghs 
et al. [48] found significantly decreased serum T 
in high-functioning ASD males compared with 
HCs. Other studies reported that plasma levels of 
T showed no difference from HCs in prepubertal 
and postpubertal ASD [57], and that serum levels 
of total and free T, DHEA-S, and estradiol showed 
no differences between ASD adults and HCs [58].

 � DHEA and DHEAS

DHEA is a major secretory product of the 
human adrenal glands and is a precursor for 
both androgenic and estrogenic steroids [59,60]. 
DHEAS, formed from DHEA by the enzyme 
hydroxysteroid sulfotransferase, is the normally 
favored storage form of DHEA [61,62] and 
is the most abundant steroid found in the 
human body [59,63,64]. DHEA and DHEAS 
are reported to have prominent influences on 
GABAA receptors [65] and have modulatory 
influences on neuronal excitability and synaptic 
plasticity [34]. Kroboth et al. [64] reviewed the 
effects of disease, diet, exercise and drugs on 
levels of DHEA and DHEAS in human plasma 
and indicated that the plasma levels are age- and 
gender-dependent. The levels decrease from the 
first few months of life until 5-7 years of age, 
then increase with age and reach peaks between 
the ages of 20 to 40 years, and decrease with age 
again after the peaks [66-68].

Studies have shown that levels of DHEA and 
DHEAS respond to stress and are associated 
with neuroprotection, mood regulation, 
cognitive performance and various psychiatric 
disorders [64,69]. There are inconsistencies in 
the reported levels of DHEA and DHEAS in 
ASD compared to HCs. Tordjman et al. [53] 
showed that, compared with HCs, levels of 
DHEA-S in plasma are increased in prepubertal 
ASD but found no difference in postpubertal 
ASD. Croonenberghs et al. [48,70] reported that 
a disequilibrium in peripheral serotoninergic 
metabolism may influence DHEAS levels and 
that L-5-hydroxytryptophan (5-HTP) [the 
precursor of 5-HT (serotonin)] induced DHEAS 
responses such that the DHEAS levels and the 
cortisol/DHEAS ratios were significantly higher 
in ASD subjects than in HCs. However, Ruta et 
al. [58] reported that the serum DHEAS levels in 
adult ASD are no different than those in HCs, and 
Strous et al. [71] reported that the plasma DHEAS 
levels in adult ASD are significantly decreased 
compared to HCs and that there was no difference 
in plasma levels of DHEA compared to HCs. 
Majewska et al. [72] compared ASD subjects with 
HCs and found that levels of DHEA were elevated 
in a 7-9 year old group but found no difference in a 
3-4 year old group when measuring levels in saliva 
samples.

 � Androstenedione

Androstenedione, which is synthesized in both 
gonads and adrenal cortex, is released into the 
peripheral blood circulation and is then converted 
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into T, DHEA or estrogens via intracrine 
mechanisms in brain, skin, the pilosebaceous 
unit, and adipose tissue [73,74] As a result, 
these tissues contribute to the final pool of active 
androgens in peripheral target tissues and may 
also contribute to androgen-related conditions 
including polycystic ovary syndrome (PCOS), 
hirsutism, and acne [58]. Ingudomnukul et al. 
[75] reported that a number of androgen-related 
medical conditions (such as PCOS, hirsutism, 
acne, breast and ovarian cancers) and androgen-
related characteristics (such as tomboyism, 
bisexualism and asexualism) are more common 
in adult ASD women and their mothers than in 
HCs, and proposed that genetics might be one of 
the factors involved in higher levels of androgen 
synthesis and/or increased local tissue sensitivity 
to circulating androgens in ASD.

Geier and Geier [76], in a study of ASD subjects 
with a mean age of 5.9 years, reported that 
serum androstenedione levels are increased in 
ASD subjects compared to HCs. Ruta et al. 
[58] found that serum levels of androstenedione 
are higher in ASD adults than HCs, with no 
sex difference, which is of interest since there 
are differences between males and females in 
the androstenedione metabolic pathway in 
normal individuals. This is further evidence of 
dysregulation and is referred to as the absence 
of the typical sexual dimorphism. Majewska et 
al. [72] found that saliva androstenedione levels 
in ASD subjects are no different in a 7-9 year old 
group or a 3-4 year old group and HCs. Tordjman 
et al.[57] did not observe a difference in plasma 
androstenedione levels between ASD children 
and HCs; but the same group reported high 
plasma T concentrations and hyperandrogenism 
in ASD children with aggressive behaviors [53].

 � Estradiol

Estradiol is one of the most active estrogens in 
humans; it is synthesized in the follicle and is 
formed from T [77-79]. Estrogens produced 
in the CNS are involved in regulating processes 
as diverse as memory, pain processing, neural 
plasticity regeneration, and tumor growth 
[80,81]. There is a paucity of studies on levels 
of estradiol in ASD. Ruta et al. [58] showed 
no difference in serum estradiol levels between 
ASD adults and HCs, and Xu et al. [56] found 
no difference in plasma estradiol levels between 
mothers of ASD children and HCs.

Bakker and Baum [82] suggested that estradiol 
may control prenatal brain and behavioral 
sexual differentiation by exerting defeminizing 

actions in male brains. In a comprehensive 
study on candidate genes associated with 
autism, Chakrabarti et al. [83] showed that 
the ESR2 gene, which codes for one of the 
two main estrogen receptors and is expressed 
in the brain, showed a nominally significant 
association with the Autism Spectrum Quotient 
(AQ) and the Empathy Quotient (EQ). de 
Bournonville et al. [84] showed that pathways 
of estrogens and androgens are coupled together, 
since androstenedione and T are precursors 
of androgens which can be converted into 
estrogens (estrone and estradiol respectively) 
in target tissues by the cytochrome P450 
aromatase enzyme. Estradiol has been reported 
to closely associate with aggressive behaviors 
which are common in ASD subjects [85-87]. 
Recently, Hoffman et al. [88] showed estrogenic 
compounds as  phenotypic suppressors in 
zebrafish mutants of CNTNAP2, an autism risk 
gene. These interesting findings suggest that the 
role of estrogens in the pathogenesis of ASD, and 
the levels of estradiol in ASD warrant further 
investigation.

 � Pregnane steroids

Pregnenolone is a direct metabolite of cholesterol 
and is very important because it is the precursor 
of several other NASs. Pregnenolone sulfate 
has been reported to stimulate the trafficking 
of NMDA glutamate receptors to the neuronal 
surface [90,91]. Allopregnanolone, a metabolite 
of pregnenolone (via progesterone), is produced 
de novo in both neurons and glia [92] and is 
also synthesized in ovaries and adrenal glands 
[12]. Allopregnanolone is a very strong positive 
allosteric modulator of the GABAA receptor [93] 
and has been reported to regulate that receptor 
through two discrete transmembrane sites [94]. 

Although allopregnanolone and pregnenolone 
have been studied extensively in psychiatric 
disorders such as major depressive disorder 
and schizophrenia [11,13,16,26,31,69,95,96], 
there is a paucity of studies on levels of these 
neuroactive steroids in ASD. Majewska et al. 
[72] showed that compared with HCs, salivary 
levels of pregnenolone and allopregnanolone 
were elevated in a 7-9 year old group, but they 
found no difference between a 3-4 year old 
group and HCs. However, an increasing number 
of investigators have become interested in the 
relationship between pregnenolone and ASD. 
Sripada et al. [97] gave oral pregnenolone to adult 
male HCs (mean age=22 ± 3.38) and showed 
enhancement of the activation of emotion 
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regulation and relief of anxiety symptoms 
(which occur frequently in ASD). Fung et al.[89] 
did a clinical trial using oral pregnenolone for 
adult ASD subjects (mean age=22.5 ± 5.8) and 
showed improvement of irritability symptoms 
and suggested using oral pregnenolone in ASD 
to improve social functioning and to reduce 
sensory abnormalities. Kazdoba et al. [98] 
showed that ganaxolone, a synthetic analog 
of allopregnanolone, can improve social and 
repetitive behaviors in an ASD mouse model. 
Braat and Kooy [99] suggested that ganaxolone 
is a potential candidate for treatment of fragile 
X syndrome which is a frequently inherited 
cause of syndromic autism [100]. Ligsay et 
al. [101] conducted a randomized, double-
blind placebo-controlled trial of ganaxolone in 
fragile X syndrome and reported no significant 
improvement in the overall population 
investigated, but suggested that this drug might 
be beneficial in treatment of fragile X syndrome 
children displaying high anxiety or reduced 
cognitive abilities.

There are some studies on progesterone and 
ASD. Frye and Llaneza [102] showed that 
plasma corticosterone, progesterone and 
progesterone’s metabolite, 5α-pregnan-3α-
ol-20-one (3α,5α-THP), were significantly 
higher in ASD mouse models than in controls. 
Mamidala et al. [103] reported that maternal 
progesterone intervention was a significant risk 
factor for ASD. Whitaker-Azmitia et al. [104] 
suggested that low maternal progesterone may 
be responsible for both obstetrical complications 
and brain changes associated with ASD and 
proposed that progesterone levels should be 
routinely monitored in at-risk pregnancies. 
Baron-Cohen et al. [105] reported that 
amniotic fluid sample levels of progesterone, 
17α-hydroxy-progesterone, androstenedione, T 
and cortisol are increased in ASD subjects, and 
these results provided the first direct evidence 
of elevated fetal steroidogenic activity in 
ASD. Deng et al. [106] found reduced 
serum progesterone levels in children with 
ASD [107]. The Cytochrome P-450scc gene 
(CYP11A1) and the Cytochrome P-45011beta 
gene (CYP11B1) are candidate genes in 
ASD that encode proteins that participate in 
the metabolism of progesterone. Increased 
levels of 11-deoxycorticosterone (DOC) 
(formed by CYP11B1-mediated conversion 
of deoxycortisol) result in increased formation 
of the GABAA receptor positive modulator 
neurosteroid THDOC [108]. 

Discussion

Some investigators in the studies mentioned 
in this review focused on the changes in the 
adolescence stage. Adolescence is a period 
of many physiological, psychological, and 
social changes in both normal and ASD 
individuals, and these are contributing factors 
to significant changes related to morphology, 
cognition, emotion regulation, and response to 
physiological stress [109-111]. Adolescence is 
also a period of increasing awareness and interest 
in both peer and romantic relationships [112] 
and rising prevalence of psychiatric disorders 
which are associated with dysregulation of the 
hypothalamic-pituitary-adrenal (HPA) axis 
and an imbalance of steroids [111]. Because 
youngsters in adolescence begin to focus on 
peer relationships and developing romantic 
relationships, a number of serious challenges 
may appear, and the impairments in social skills 
inherent with ASD subjects become increasingly 
more apparent [110,113].

Studies have shown that amplified steroid 
release in prepubertal ASD subjects indicated 
the precociousness of adrenarche [114] because 
the amounts of synthesized androgens correlate 
with the size of adrenals [115]. Meanwhile, 
because of early maturation, the hyperplasia 
or hypertrophy of the adrenal reticular zone 
contributes to augmented steroid secretion 
in ASD. So, excessive steroid secretion can 
point to precocious adrenarche in prepubertal 
ASD subjects and may be a predictior of early 
maturation. Moreover, an excess of excitatory 
steroids (such as DHEA and pregnenolone) 
may amplify neuro-stimulant influences such 
as deficits in GABA neurotransmission [116] 
and enhance the activity of glutamate [117] in 
subjects with ASD, contributing to increased 
ASD comorbidities (anxiety, sleep disturbances 
and seizures) [118,119]. Due to the potential 
role of neuroactive steroids and related steroids 
in the development of ASD subjects, monitoring 
changes in their concentration in the adolescence 
stage or even earlier is important in case they 
may be helpful for predicting changes in mood 
and behavior and allow for earlier intervention in 
subjects with ASD. 

Overall, the results on levels of NASs and related 
steroids in body fluids of ASD subjects reported 
in the literature are inconclusive. Differences in 
experimental design among studies and factors 
such as age, gender, number of subjects, time 
of day at which samples are taken, storage 
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conditions of samples and medication being 
taken at the time of the studies may account 
for varying results. Future studies should take 
into account these factors and analyzing levels 
of several steroids simultaneously. The levels of 
NASs may change with anxiety and stress, which 
may be related to strange environments and 
processes in collection of samples. Saliva samples 
are relatively convenient for caregivers to collect 
at home, even from infants and toddlers [120]. 
There should be reduced emotional changes 
compared to collecting blood samples and thus 
possibly increased accuracy of results [121]. 
Saliva samples have proved appropriate in the 
past for determining levels of several neuroactive 
and related steroids [72,122-126]. 

Because of convenient, noninvasive, relatively 
stress-free collection and applicability to dynamic 
monitoring, saliva samples are increasing in 
favour as a specimen choice for detecting levels 
of steroids [127]. Although the levels of steroids 
in saliva samples are several-fold lower than those 
in serum, they generally reflect their levels in the 
blood [128,129]. The collecting and analysis of 
saliva samples are suitable for rapid and simple 
application in clinical studies. In addition, it has 
been shown that saliva samples can be analyzed 
for amino acids accurately in real time [130-
132]; there is considerable evidence for a GABA-
glutamate imbalance in ASD [17-19,133,134] 
and several neuroactive steroids act as strong 
modulators of receptors for GABA and glutamate 

[91-93,135,136]. Thus, it may be useful to 
employ saliva samples of ASD subjects routinely 
to determine levels of neuroactive steroids and 
amino acids in clinical practice.

Conclusion

Since so many of the NASs have effects on 
brain development and modulatory actions on 
neurotransmitters such as GABA and glutamate, 
future studies on body fluid levels of these steroids 
should ideally use assay procedures that provide 
simultaneous analysis of as many of these NASs 
and related steroids as possible as well as of amino 
acids related metabolically and/or functionally 
to GABA and glutamate. Consistency among 
research groups with regard to study design and 
factors such as time of collection of samples and 
appropriate storage of samples would do much to 
advance our knowledge of possible biochemical 
factors involved in the detection etiology of ASD. 
Establishment of standardized international 
criteria for such studies is warranted. 
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