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ABSTRACT 

Objective 

To explore the effects of neural stem cells (NSCs) transplantation on the differentiation of 
substantia nigra (SN) dopaminergic neurons and the rotational behavior on rat model of 
Parkinson’s disease (PD). 

Methods 

Adult SD rats were randomly split into three groups of five: control, sham and transplanted 
groups. 6-OHDA (2 μg/μl) was microinjected (8 μl) into the right medial forebrain bundle 
(MFB) of sham and transplanted rats. Rats in the transplanted group were injected with 5 μl 
NSCs suspension (5 × 104 cells/μl) into the right SN while an equal volume of PBS solution was 
injected in the sham group. 

Results 

Eight weeks after transplantation, Tyrosine hydroxylase (TH-ir) neurons presented slight 
somata and few dendrites, the levels of cell counting, protein synthesis and mRNA expression 
were significantly decreased in both the sham and transplanted groups (p＜0.05). However, 
compared with the sham group, the levels in the transplanted group increased (p＜0.05). Two 
weeks after transplantation, the rotational behavior in the transplanted group significantly 
was improved compared to pre-transplantation; this was also significantly different in the 
eighth week (p＜0.05), and there were no significant improvement differences in the rotational 
behavior in the sham group.

Conclusion Transplanted NSCs are able to differentiate into SN dopaminergic neurons and 
attenuate characteristic behaviors in rat model of PD.
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rat rotational disorder, indicating that in vivo 
transplantation is likely to rebuild the neural 
network and the synaptic junctions [7,10,11]. 
Similar reports were already shown [11,12] .

Currently, there are few reports regarding NSCs 
injected into the substantia nigra (SN). Most 
of the depletion of PD dopaminergic neurons 
occurs in the substantia nigra, so this experiment 
aimed at study the effect of the NSCs injected 
into the SN on TH content. In the PD rat 
models this experiment would also assess the 
ability of transplanted NSCs to differentiate 
into dopaminergic neurons and alter rotational 
behaviors in a PD rat model. The results of these 
experiments may serve as a theoretical foundation 
to support the establishment of human clinical 
cell therapies for PD. 

Materials and Methods 

 � Materials 

Sprague-Dawley (SD) rats (Slac Laboratory 
Animal Co., Ltd.) 6-dopamine，apomorphine 
(Sigma Company), rabbit anti-rat tyrosine 
hydroxylase antibody (Genetex Company), 
SABC diagnostic kit (WEIAO Biotech Co, 
LTD), DAB solution (Boster Biotechnology 
Company), MEM/F12 (Hyclone Company), 
B-27, FGF-Basic, EGF, Trypsin-EDTA (Gibco 
Company), adult rat stereotactic apparatus (WPI 
Company). 

 � PD Modeling

Fifteen healthy adult female SD rats, weighing 
180-220 g, were randomly divided into 3 
groups: PD model and sham group, PD model 
with NSCs transplant group, and control group. 
Rats in the first two groups were anesthetized 
with an abdominal injection of 10% chloral 
hydrate (5 ml/kg, i.p.) and immobilized in a 
stereotactic apparatus, with the incisors fastened 
by the dental rod and with the external auditory 
canals fastened by the ear bar. Then the dental 
rod was adjusted on the incisor surface to 2.4 
mm lower than the ear bar. After the routine 
sterilization, the scalp was cut longitudinally 
along the centerline to find the Bregma. Using 
the Bregma as the origin of coordinates and the 
stereotactic apparatus map as the reference [12], 
two coordinates of the dextral medial forebrain 
bundle (MFB) were determined [13,14] antero-
posterior (AP) 1.8 mm, medio-lateral (ML) 2.5 
mm and dorso-ventral (DV) 7.5 mm; AP: 1.8 
mm, ML: 2.5 mm and DV: 8.0 mm. The skull 
was drilled with the burr to expose the cranial 

Introduction

Parkinson’s disease (PD) is second to Alzheimer’s 
disease, as the most common progressive 
neurodegenerative disease. It is characterized by 
the degeneration of dopaminergic neurons in 
the substantia nigra coincident with progressive 
depletion of dopamine in the striatum [1]. 
At present, the main treatments for PD are 
medication and functional surgery [2,3], however 
as the period of treatment prolongs the efficacy 
reduces sharply with increased complications. 
The current treatment approaches do not prohibit 
the progression of PD when the diffuse lost 
neurons of substantia nigra in the brain area are 
not supplemented. The causes of PD are not fully 
elucidated. Patients are commonly diagnosed in 
the middle to late stages and already have severe 
symptoms when seeking medical help. As such, 
treatment with the currently symptom-targeting 
or modifying treatments available does not result 
in long-term optimal outcomes.

Application of neural stem cells (NSCs) as a 
potentially alternative therapy is being tested in 
the hopes of reducing the occurrence of severe 
complications by regenerating lost neurons. 
An optimal PD treatment would restore the 
dopamine content in the brain and also revive 
the functionality of the nigra-striatal pathway. 
To date, treatment with endogenous NSCs 
has been used as an alternative treatment in 
adult human and primate brain and primate 
brain (particularly in the hippocampus) have 
demonstrated limited capacity to survive, 
differentiate and mature and this has limited the 
development of the application of endogenous 
NSCs as a viable treatment. The ever-developing 
techniques in stem cell isolation and culture 
technology in vitro as well as advances in cerebral 
stereotaxic technology have brought new hope 
for attenuating the PD nigra-striatal pathway 
degeneration through NSCs transplantation 
[6,7]. In vitro culture and in vivo transplantation 
have shown that NSCs are able to markedly 
increase the expression of neurotropic factors 
such as nerve growth factor (NGF), brain 
derived neurotrophic factor (BDNF) and 
neurotrophin-3 (NT-3). This not only helps the 
transplanted NSCs to adapt well to the ischemic 
and/or hypoxia microenvironment, but also to 
protect the remaining lesioned endogenous cells 
[8,9]. The transplanted NSCs in the PD rat 
model striatum are able to survive and partly 
produce tyrosine hydroxylase (TH-ir) neurons. 
The newly generated neurons migrate to the SN 
and secrete dopamine that attenuates the PD 
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cavity, and then 4 μl 6-OHDA (2 μg/μl) was 
microinjected at the depth of 7.5 mm with the 
microsyringe adjustor controlling the dripping 
speed, meanwhile avoiding the light (0.5 μl/min, 
for 5 min). After 4 μl 6-OHDA was injected, the 
needle remained for 5 minutes then went further 
to DV 8.0 mm with the same speed, and another 
4 μl 6-OHDA was injected at the same rate. The 
needle was removed after the 10 min and the 
burr hole was enclosed with the glass-ionomer 
cement. Penicillin powder was sprinkled on the 
cutting surface and the opening was sutured 
after disinfection. The rats were labeled with 
the date and their general state. Two weeks after 
the drug administration, the rats received the 
hypodermic injection of apomorphine (1 mg/kg) 
at the nape of the neck to induce rotational tests. 
Revolutions per minute were counted for 30 min 
and rats that performed ≥ 7 r/min were regarded 
as successful PD modeling [15]. 

 � NSCs Culture

Pregnant 14 d SD adult rats at 14 days gestation 
were anaesthetized and placed on an ultraclean 
bench. The mesencephalon midbrain of the fetal 
rats was dissected and the brain tissues were 
dissected and digested in trypsin with repeating 
blow through the suction tube. After digestion, 
the brain tissues were filtered through a 400-mesh 
cell screening. The filtrate was then centrifuged 
at 1000 rpm for 5 min. The remaining tissues 
(2 × 105 cells /ml) without the supernatant 
fluid were inoculated with the serum-free 
DMEM/F12 (4～5 ml) in the 50 ml culture 
flask, containing bFGF(20 μg/l), EGF(20 μg/l), 
B27(20 μg/l). When the cell refraction registered 
well from the microscopy observation, the tissues 
were transferred to the thermostat at 37℃ and 
5% CO2. The growth of NSCs was monitored 
daily under an inverted microscope. The culture 
medium was changed every 2～3.5 days for a 
week or so for the passage culture. 

 � NSCs transplant 

Anesthetized adult rats of the transplanted group 
were fastened to the stereotactic apparatus in 
order to determine the transplant coordinates of 
the NSCs in the SN [10]: AP 5.2 mm, ML 1.8 
mm and DV 7.8 mm. The transplant site was 
microinjected with 5 μl NSCs suspension (5 × 
105 cells/μl) that was cultured on the ultraclean 
bench at the rate of 1 μl/min. The needle remained 
for 10 mintues then was removed at the rate of 
1mm/min. The sham group received iso-volumetric 
PBS solutions in place of NSCs suspension and all 
the other operation stayed the same.

 � Behavioral experiment

Behavioral tests were performed at week 1, 
2 weeks, 4 weeks and 8 weeks after the NSCs 
transplantation in the same quiet setting. The 
adult rats received a sub-dermal injection of APO 
(1 mg/kg) at the nape prior to rotational tests. 
The number of revolution within 30minutes was 
counted and the results from the transplanted 
group and the sham group were compared. 

 � Immunohistochemistry staining 

Eight weeks after the NSCs transplantation，the 
SD rat brains of the two groups were harvested 
with 4% paraformaldehyde for fixation 
and immersed in 25% sucrose solutions for 
dehydration. The brain tissues were then 
cut on a freezing microtome for the coronal 
sections at the thickness of 10 μm. The coronal 
sections were rinsed by 3 times with PBS and 
subsequently steeped in the 0.6% hydrogen 
peroxide-methanol solution for 30 minutes 
at room temperature so as to inactivate the 
endogenous peroxidase vitality. After the second 
PBS rinsing，5% BSA (bovine serum albumin) 
sealing liquid was added to cover the sections for 
20 minutes. When the liquid was absorbed by the 
filter paper, anti-rabbit tyrosine hydroxylase single 
clone antibody (1:1000 PBS dilution) was added 
to the sections and incubated at the temperature of 
4℃ overnight; rinsed in PBS, then the secondary 
antibody biotin IgG, tri-anti streptomycin avidin 
biotin, and peroxidase enzyme were subsequently 
added and cultured for another 20 minutes at 
37℃. After rinsing in PBS, the sections were placed 
at room temperature for 13min’s to develop DAB 
coloring. Three images of the substantial nigra pars 
compacta (SNpc) were chosen randomly under the 
light microscopy (x400 magnification) in order for 
the calculation of the positive cells [17]. 

 � Western blot 

Total protein of the dextral rat nigral tissues was 
sampled in the Nonidet P-40 lysis buffer and 
then centrifuged for 15 minutes to extract the 
supernatant. The protein concentrations were 
tested in the bicinchoninic acid (BCA) protein-
binding assay kit (DGKC). An equal amount of 
protein sample was homogenized in the loading 
buffer and the total 10 μl mixture was treated 
in SDS-PAGE (80V for 30min then changed to 
120V for over 60min). The protein separating 
gels were transferred to the nitrocellulose 
membrane before Ponceau staining. After the 
transmembrane success, the sample was blocked 
by 5% skim milk for 1 hour and then incubated 
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with the anti-rabbit tyrosine hydroxylase single 
clone antibodies (1:2000 TBST buffer) at 4℃ 
for one night on the shaking table; washed 
with TBST and incubated with secondary anti-
cochlearia peroxidase enzyme for 1 h at room 
temperature, labeled as goat anti-rabbit IgG. After 
the third rinse, enhanced chemiluminescence 
(ECL) reagents were added to expose the sample 
in a dark room for photography using gel-
imaging system. Densitometry of the banding 
strength was assessed through image acquisition 
and analysis software. Target proteins were 
contrasted with β-actin as reference, and the 
difference between the OD values indicated the 
expression level of target proteins. 

 � Real-time PCR 

Total RNA was extracted from the adult rat 
dextral nigral tissues in TRIzol reagents and 
synthesized to cDNA by M-MLV reverse 
transcriptase. The Real-time PCR experiment 
was conducted with cDNA as the model. Primer 
sequences (Invitrogen company synthesis) are as 
shown in Table 1.

Amplification conditions: 94°C 5 min，94°C 30 
s，57°C 30 s，72°C cycling 30 times/per min 
[18,19]. Afterwards, 2△△Ct method was applied to 
calculate the multiples of genic change between 
the transplanted group and the model group. 

 � Statistical analysis 

All data were analyzed experimentally with the 
SPSS 19.0 statistical software and illustrated by 
Mean ± standard deviation, applying a one-way 
ANOVA for multi-group comparison and SNK 
test between two groups. A value of p＜0.05 was 
considered as a statistically significant difference. 

Results

 � NSCs Culture 

After 24 h of the original NSCs culture, stem 
cells expanded with the suspension growth, 
high refraction and high viability. Some of 
the cells were asymmetrically splitting and 
tiny neurospheres came into shape. When the 

culture reached the 7th day, neurospheres of 
different sizes appeared and bigger neurospheres 
showed weak refraction in the center but strong 
refraction around the edge, indicative of low 
cell vitality and deficit oxygen that impacted the 
nutrient supply and metabolism of the stem cells. 
This was the time to begin cell passages. Before 
the transplantation it was necessary to digest the 
neurospheres to avoid clogging the microsyringe 
needle and to reduce the risk of brain tumors. 
After the digestion, there are abundant single 
NSCs presented with just a few undigested 
neurospheres left (Figure 1). 

 � Behavioral tests

On the first day after the 6-OHDA 
administration, some rats showed low vitality 
with signs of piloerection. Over time the rats 
became tardy and easy to catch with distinct 
piloerection. The body tilted on one side and the 
tail was stiff, indicating symptomatic appearance 
of PD, whereas the control group rats however 
showed none of the above-mentioned problems. 
The APO-induced rotational tests demonstrated 
that the PD rats used the leftward (opposite side 
of the focal damage) rear legs as the supporting 
point, spinning end to end on the spot. The 
rotation rates of the transplanted group began to 
decline a week after the NSCs transplantation, 
but the difference was not statistical significance 
compared with pre-transplantation. Two weeks 
later, rotation rates had a markedly decreased 
and the difference was of statistical significance. 
From week 4 to week 8, rotation rates still 
remained low. On the contrary, the sham group 
showed evident increases, but there was no 
difference among weeks 1, 2, 4 and 8 (Figure 2). 

 �  TH expression 

TH-ir neurons in the nigra of the normal SD 
rats had somata of plump with cytoplasm, 
multiple dendrites，and high density (total 
number of cells 76.25 ± 11.00), whereas the 
cytoplasm of the sham group and the transplant 
PD groups were thin with decreased dendrites 
and low density (17.83 ± 9.01, 23.33 ± 10.92 
respectively) (Figure 3). Cell counting using 
the light microscopy revealed that the number 
of TH-ir neurons in the sham group and the 
transplant group decreased by 76% and 69% 
respectively. Compared with the sham group, 
the number of TH positive cells in the transplant 
group was 31% higher (Figure 3g), and the levels 
of TH gene (Figure 3i) and protein expression 
(Figure 3h) rose slightly, but were far from levels 
in the control. 

Table 1: Total RNA was extracted from the adult rat.

Gene Primer sequence (5′-3′)

TH [18]
Forward: AGC TGT GCA GCC CTA CCA AGA

Reverse: GTG TGT ACG GGT CAA ACT TCA

β-actin
Forward: CCT CTA TGC CAA CAC AGT

Reverse: AGC CAC CAA TCC ACA CAG
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Figure 1: The microscopic form of NSCs a: NSCs form culturing for 24 h; b: NSCs form culturing for 7d; c: NSCs form before transplantation; d: NSCs form into 
neurospheres.

Figure 2: APO-induced rotational behavior a,b: Nearly-circular rotation; c: Changes of rotational behavior before and after NSCs transplantation; d: Comparison 
of rotational behavior after standardization.
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Figure 3: Influences of transplanted NSCs on the dopaminergic neurons in the SN of PD rats. a,b TH-ir neurons in the control group; c,d TH-ir neurons in 
the model group; e,f TH-ir neurons in the transplanted group; g,h,i The averaged total number of TH-ir neurons, Western blot and Real-time quantitative 
PCR in different groups: TH-ir neurons significantly decreased in the SN of model rats compared with control rats (*p<0.05), while increased slightly in 
the transplanted rats compared with model rats (#p<0.05).

Discussions 

Current treatment for PD is successful for the 
partial relief of symptoms, but not successful for 
the basic control of vital etiology. Until now the 
main therapeutic approaches available are mainly 
key strategies, including L-DOPA replacement 
therapy, DA receptor agonist and deep brain 
stimulation procedures [21]. However as the 
disease progresses, the pharmacotherapeutic 

efficacy decreases, and worse still, is complicated 
by the side effects of motor fluctuation as well 
as L-DOPA induced dyskinesia. These problems 
have propelled the shift to cell replacement 
therapy, therefore a promising restorative 
therapy intending to secure a long-lasting relief 
of patients’ symptoms. Various stem cell lines of 
multifarious origins have been established, which 
can be further categorized into embryonic stem 
cells (ESCs), neural stem cells (NSCs), induced 
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