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Connection re-established: 
neurotransmission between the 
medial prefrontal cortex and serotonergic neurons offers 
perspectives for fast antidepressant action

Summary points
�� Background

-- Only a third of depressed patients experience a complete therapeutic improvement with the use of current 
antidepressant treatments.

-- Even when effective, these molecules display a delayed onset of action. This can be a critical point when 
considering that a significant proportion of patients are at risk for suicide.

-- The development of new, more effective and more rapid antidepressant treatments constitutes a major issue for 
current neuropsychopharmacological research.

�� New perspectives of research
-- Several authors have pointed out a potential role for the molecular factors and/or processes that favor tissular 

growth and plasticity within the brain, proposing that monoaminergic-based pharmacological approaches 
might be somewhat outdated.

-- There are, however, a number of recent reports suggesting that the anatomical connections existing between 
the medial prefrontal cortex (mPFC) and serotonergic (5‑HT) neurons located within the dorsal raphé may 
constitute a promising vector to achieve more rapid and/or more effective antidepressant efficacy. This vector 
being mobilized by using either pharmacological or surgical tools.

�� Importance of the mPFC/5-HT connection
-- Deep-brain stimulation of the human Cg25 area produced strong and rapid antidepressant effects in  

treatment-resistant depressed patients. Animal experiments indicate that the glutamatergic projections 
connecting the mPFC and 5-HT neurons appear to be crucial for the expression of such effects.

-- Several animal studies also indicate that the stimulation of 5-HT4 receptors may result in antidepressant-like 
effects within a four- to seven-fold more rapid timeframe than what is observed with standard molecules.  
This effect appears to involve the mobilization of mPFC/5-HT connections.

-- Similarly, the use of 5-HT7 receptor antagonists led to promising results to achieve a more rapid and/or more 
effective antidepressant action. Once again, the effect seems to originate from the mPFC, with a possible 
involvement of the glial system.

�� Conclusion
-- A more complete characterization of the mPFC/5-HT relationship should open up new perspectives for the treatment 

of depression, with the possibility to address multiple targets and therefore increase the diversity of approaches. 
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The search for a rapid-acting antidepressant 
(AD) strategy is still considered as a “quest for 
the holy grail” in the field of neuropsychophar-
macology [1]. Typical ADs, among which selec-
tive serotonin reuptake inhibitors (SSRIs) are the 
most frequently used, display a delayed onset of 
action, sometimes requiring administration for 
several weeks before a clinical improvement can 
be seen. In addition, their therapeutic efficacy 
is not entirely guaranteed, as up to two-thirds 
of patients may be partially or fully resilient to 
such treatments [2]. The delayed action of ADs 
becomes a critical factor in particular cases 
of major/severe depression, where the risks of 
suicide are strongly increased. Several clinical 
reports indicate that suicide attempts are maxi-
mal during the first weeks of treatment, and that 
this risk is decreased in patients who experience 
an earlier AD response [3]. Furthermore, the 
adherence of patients to their medication appears 
to be more stable if therapeutic efficacy is per-
ceived to occur rapidly [3]. It is now accepted 
that, despite the variety of their pharmacologi-
cal profiles and primary targets, a common trait 
of all the currently used AD molecules resides 
in their ability to increase central serotonergic 
(5‑HT) transmission [4–6]. In addition, most 
studies have focused on the dorsal raphé (DR) 
nucleus, from which the vast majority of brain 
5‑HT innervation originates [4]. However, 
SSRIs (e.g., tricyclics, MAO inhibitors or mixed 
reuptake inhibitors) do not act directly on 5‑HT 
impulse flow, but induce an indirect augmen-
tation of 5‑HT extracellular levels via inhibi-
tion of inactivation mechanisms (e.g., reuptake 
or catabolism). Consequently, their facilitatory 
effect on 5‑HT transmission is fully dependent 
on the actual level of DR 5‑HT neuron elec-
trical activity. Numerous animal studies have 
shown that, during the early stage (a few days) 
of a SSRI treatment, the 5‑HT neuron impulse 

flow is quasi-suppressed, owing to the existence 
of inhibitory somatodendritic 5‑HT

1A
 autorecep-

tors [5,7]. It is only after a long-term (>2–3 weeks) 
period of treatment that these autoreceptors 
become desensitized, thus allowing the 5‑HT 
neuronal firing rate to recover; it is thought that 
the delay of action of ADs is precisely related to 
the period required for this desensitization to 
occur [5,7].

More recently, new strategies of research have 
emerged, with the purpose of ‘bypassing’ this 
5‑HT-related inertia. They were oriented toward 
assessing the effects of AD beyond the postsyn-
aptic 5‑HT receptor level, searching for the cel-
lular/molecular mechanisms that were affected 
by the treatment. An extensive and seminal 
work has been conducted in this field for more 
than a decade, in particular by the groups of 
Duman and Nestler [8,9]. These studies enabled 
the isolatation of a number of biological param-
eters that are deeply modified after a sustained 
AD treatment. Initially, the first changes iden-
tified were an activation (phosphorylation) of 
the transcription factor CREB [10] and enhanced 
adult neurogenesis [11], both of which are selec-
tively expressed within the hippocampus. More 
recently, the BDNF (for review see [12]) and 
VGF [13,14] growth factors were found to play a 
significant role in the effect of ADs, as well as 
the MAPK cascade [15] and p11, a Ca2+-binding 
protein of the EF-hand (helix–loop–helix) type 
[16,17]. These observations led to the general idea 
that ADs share the common ability to positively 
modulate cellular growth and plasticity in mood-
related brain areas. As such, they would act in an 
opposite manner to stressful experiences, which 
are also known as risk factors for the emergence 
of depression in humans [18].

Should the emergence of these hypo
theses mean that ‘old’ approaches based on 
the modulation of neurotransmission, such as 

Summary	 The search for fast-acting antidepressants has been a major challenge in 
neuropsychopharmacology for many years. Although the involvement of serotonin (5‑HT) 
in the mechanisms of action of classical antidepressants has been clearly established, the 
delayed onset of action of these drugs prompted several authors to propose alternative 
targets in order to achieve a more rapid relief of symptoms in depressed patients. However, 
recent studies indicate that it may be possible to elaborate fast-acting antidepressant 
strategies based on 5‑HT, provided that such strategies would directly target 5‑HT neuron 
electrical activity. Furthermore, glutamatergic pyramidal neurons projecting from the medial 
prefrontal cortex to the dorsal raphé appear to play a critical role. This article presents some 
of the data that support this hypothesis, including results from medial prefrontal cortex 
deep-brain stimulation studies, as well as those related to treatments with 5‑HT4 agonists 
and 5‑HT7 antagonists.
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neuropharmacological ones, have to be consid-
ered outdated? It has, for instance, been recently 
proposed that a viral-mediated gene therapy, 
aimed at increasing brain levels of p11, could 
constitute a promising new way to achieve AD 
efficacy [16,19]. Similarly, it is suggested that 
the development of therapeutic strategies able 
to directly target the molecular factors men-
tioned earlier would allow a more rapid onset 
of action than the currently used ADs [12,20]. 
Some recent clinical trials have been successful 
in this context. These studies were notably based 
on the use of the NMDA antagonist ketamine 
or consisted of sleep deprivation, both strategies 
being effective within hours [3]. The idea was to 
favor a rapid increase of synaptic/brain plastic-
ity, involving, at least partially, an imbalance 
of the AMPA to NMDA throughput [3]. There 
is, however, a growing body of evidence that 
indicates that acting upon the connections exist-
ing between different neuronal networks, which 
includes pharmacological approaches, may also 
allow fast AD effects. In the present work, we 
will review the importance of the relationship 
existing between the medial prefrontal cortex 
(mPFC) and 5‑HT neurons, with a particular 
focus on the role of 5‑HT

4
 and 5‑HT

7
 recep-

tors (some excellent reviews and articles have 
already highlighted a role for cortical 5‑HT

1A
 

and 5‑HT
2A

 receptors in this context [21–23]). We 
will first discuss a series of data showing that 
a direct, intracerebral electrical stimulation of 
the mPFC itself may result in spectacular AD 
efficacy in patients, and displays strong AD-like 
properties in rodents. The importance of central 
5‑HT transmission in the underlying mecha-
nisms will also be discussed. We will thereafter 
address the relevance of studying 5‑HT

4
 recep-

tors, their agonists potentially constituting a new 
(and yet ‘monoaminergic’) class of fast-acting 
ADs. In a similar manner, we will present a 
body of evidence suggesting that 5‑HT

7
 recep-

tor antagonists may also be of importance for the 
purpose of accelerating AD efficacy. For both 
5‑HT receptor types, as already mentioned, 
the connection between the mPFC and 5‑HT 
neurons appears to play a pivotal role in the 
expression of the reported features.

Deep-brain stimulation of the mPFC
Within the human brain, several limbic struc-
tures have been associated with affective and 
anxiety disorders. Historically, ablative stereo-
tactic procedures of the anterior cingulate cortex 

(anterior cingulotomy), of projections from the 
orbitofrontal (subcaudate tractotomy) [24,25] 
and/or cingulate cortex to the basal ganglia and 
medial thalamus (limbic leucotomy) constituted 
surgical options for treatment-refractory depres-
sion (for review see [26–28]). However, these pro-
cedures, although partially effective in allevi-
ating symptoms in patients with affective and 
obsessive–compulsive disorders, have significant 
and irreversible side effects [27,29]. More recently, 
functional imaging studies emphasized the 
involvement of limbic dysfunction in depression, 
and revealed decreases in metabolism of dorsal 
limbic and neocortical regions (prefrontal, pre-
motor and parietal cortex) and relative increases 
in ventral paralimbic areas (subgenual cingu-
late, anterior insula, hypothalamus and cau-
date) in depressed patients [30,31]. Interestingly, 
the subgenual cingulate gyrus (SCG), adjacent 
to the Brodmann area 25, is able to modulate 
the activity of both the frontal cortex and the 
limbic system, which are respectively under-
active and overactive in depressed patients 
[32–34]. Moreover, it has been reported that this 
region, involved in the mediation of depressive 
symptoms [35,36] or acute sadness [37,38], is also 
metabolically overactive in treatment-resistant 
depression [39,40] and is normalized after suc-
cessful treatments including pharmacological 
treatment [30,32,41], electroconvulsive therapy 
[42] and transcranial magnetic stimulation [43]. 
Mayberg et al. conducted a pilot study to exam-
ine the efficacy of SCG area deep-brain stimula-
tion (DBS) in treatment-resistant patients [44]. 
In the initial report, four of six patients dem-
onstrated a significant reduction of depressive 
symptoms after only 1 week of high-frequency 
DBS. In addition, the authors observed acute, 
quasi-instantaneous behavioral changes during 
the daily short sessions of DBS that occurred 
within the first postoperative week, before the 
protocol was established in a continuous mode 
[44]. Therefore, it may be hypothesized that the 
efficacy of DBS actually occurs within a very 
rapid time-frame, similar, or even inferior, to the 
one observed with ketamine or sleep depriva-
tion (see earlier). The recruitment of 14 more 
refractory patients confirmed these preliminary 
results: the benefits observed after 1 week on 
the Hamilton Depression Rating Scale were still 
maintained after 6 or 12 months of stimulation, 
with 35% of patients (seven out of 20) in total 
remission, and 25% (five out of 20) displaying 
a partial response [45,46]. Additional trials now 
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need to be conducted in a larger group of patients 
with the addition of ‘true’ double-blinded meth-
ods of evaluation to fully validate the method. 
However, it should be mentioned that, although 
the studies were not blinded as such, they were 
subject to strict control conditions: during the 
first postoperative week, patients were stimulated 
using either a 0.0 V, a subthreshold or the best-
set condition of stimulation, being unaware of 
the setting chosen. In the first two cases, stimu-
lation failed to elicit any behavioral changes. 
Also, in order to assess whether the long-term 
benefit in responders could be related to placebo 
or nonspecific factors, the continuous stimula-
tion of patient one was stopped after 6 months. 
Following blinded discontinuation of bilateral 
stimulation (stimulators set at 0.0 V), AD effects 
were maintained for 2 weeks but a progressive 
change in behavior, characterized by loss of 
energy and initiative, impaired concentration 
and reduced activities were observed during 
weeks 3 and 4. These symptoms were normal-
ized 48 h after the stimulator was turned back 
to the previous optimal settings.

Although the neurobiological bases of DBS 
as a therapeutic AD strategy are not currently 
determined, several lines of evidence suggest 
that there are specific neural circuits within 
the cortico-limbic system that mediate stress 
responsiveness, mood and emotional regulation. 
Regarding its mode of action, one of the com-
monly proposed hypotheses is that high-fre-
quency stimulation reduces neural transmission 
through inactivation of voltage-dependent ion 
channels [47–49]. However, currently available 
animal studies do not support this possibility. 
Thus, Hamani et al. have modeled the anti-
depressant effect of SCG DBS by stimulating 
the rat mPFC [50], a brain area that is likely to 
be homologous to the human SCG in rodents 
[51]. They clearly demonstrated that high-fre-
quency stimulation of mPFC (130 Hz) pro-
duced an AD-like response in the forced swim 
test, and improved anxiety and hedonic states 
in both the novelty suppressed feeding test and 
sucrose consumption test. Importantly, they 
also showed the involvement of central 5‑HT 
in DBS. First, using microdialysis, they showed 
that high-frequency stimulation of the mPFC 
correlated with a sustained increase of hippo-
campal 5‑HT release. Second, AD-like behav-
iors induced by mPFC DBS are suppressed by 
a lesion of the 5‑HT system. In agreement with 
these results, it has also been reported in rodents 

that a moderate to high (20–60 Hz) frequency 
stimulation of mPFC glutamatergic neurons 
increases 5‑HT release in the DR, as well as 
dopamine output in both the ventral tegmen-
tal area and the nucleus accumbens [21,52–55]. 
More recently, we have studied the effects of 
mPFC DBS (130 Hz) on the firing activity of 
DR 5‑HT neurons by using electrophysiologi-
cal paradigms. We found that after only 1 h of 
DBS, the mean firing activity of 5‑HT neurons 
increased by 30% [56].

Surprisingly, Hamani et al. also observed that 
a neuronal lesion in the mPFC, induced by using 
ibotenic acid, failed to affect the AD-like effects 
of DBS [50], which caused the authors to propose 
a possible involvement of ‘en passage’ fibers rather 
than local cell bodies [50]. Although it can not 
be excluded that other cortical areas may exert 
an influence on DR 5‑HT activity, it remains 
that anatomical studies report a dense innerva-
tion of the DR coming from the mPFC [57,58]. 
Accordingly, in  vivo ‘collision’ electrophysio
logical experiments, using orthodromic and 
antidromic stimulations, have shown that a sig-
nificant proportion of mPFC cell bodies project 
directly into the DR [21]. It is therefore possible 
that the persistence of DBS effects after ibo-
tenic lesion could be caused by the recruitment 
of the few surviving pyramidal neurons. If so, 
the activity of these survivors would necessitate 
a strong metabolic supply, and the role of glial 
cells becomes more important than in normal 
conditions. Interestingly, Banasr and Duman 
have characterized the effects of a pharmaco-
logical glial reduction in the mPFC of adult rats 
in behavioral tests known to be affected by stress 
or AD treatments [59]. Remarkably, they dem-
onstrated that mPFC infusions of an astrocyte-
specific toxin, l‑a‑aminoadipic acid, induced 
anhedonia, anxiety and helplessness while a 
ibotenic acid neurotoxic lesion failed to induce 
any behavioral impairment [59]. These effects of 
l‑a‑aminoadipic acid, similar to chronic unpre-
dictable stress-induced depressive-like behaviors, 
support the hypothesis that loss of glia contrib-
utes to the core symptoms of depression. Based 
on these observations, we conducted experiments 
in order to assess the implication of glia in the 
AD response to DBS. Our preliminary results 
showed that l‑a‑aminoadipic acid infusion in 
the mPFC attenuated the facilitating effect of 
DBS on 5‑HT firing activity [56]. We concluded 
that the glial system plays an important role 
in the AD effect of DBS, likely by enhancing 
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gliotransmitters and glutamate uptake in the 
mPFC. Indeed, Banasr et  al. have recently 
shown that glia-mediated glutamate uptake in 
the mPFC plays a key role in the behavioral and 
physiological response to stress and, therefore, in 
the pathophysiology of depression [60].

While DBS of the mPFC is at the early stage 
of testing, it seems to be a very promising pro-
cedure, owing both to its ability to improve 
depressive symptoms in refractory patients, and 
the amazing speed (see earlier) with which it 

might operate. The characterization of mech-
anisms mediating these AD effects may pro-
vide new perspectives for less invasive and/or 
pharmacological treatments. Some of these 
hypotheses are summarized in Figure 1.

5‑HT4 agonists as a putative new class of 
fast-acting antidepressants
Since 5‑HT

4
 receptors were f irst identif ied 

in 1988 [61,62], a growing number of stud-
ies have been conducted to assess both their 
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Figure 1. Some hypotheses regarding the mechanisms underlying fast antidepressant responses related to the cortico-raphé 
neurotransmission. The key factor appears to be the enhanced release of glutamate in the synaptic cleft between pyramidal neuron 
terminals and DR 5‑HT cell bodies. (1) High-frequency stimulation (DBS, 130 Hz) of the mPFC leads to an increased firing rate of 
glutamatergic pyramidal neurons. Consequently, extracellular levels of glutamate augment in the vicinity of 5‑HT neurons within the 
DR, which receive an important innervation from the mPFC. This, in turn, results in an enhanced stimulation of glutamatergic receptors 
located on 5‑HT cell bodies, particularly those of the ionotropic AMPA/kai type, increasing the electrical activity of DR 5‑HT neurons. It 
seems that glial cells (represented here by the astrocyte) contribute to the effect of DBS by allowing the challenged metabolism of the 
pyramidal neuron to be sustained. (2) The stimulation of mPFC 5‑HT4 receptors by an agonist also increases the firing rate of pyramidal 
neurons, in a similar manner to that described for (1). Ultimately, this leads to an enhanced activity of DR 5‑HT neurons. (3) The 
blockade of 5‑HT7 receptors by an antagonist may also contribute to the excitatory control exerted by mPFC pyramidal cells on DR 5‑HT 
function. Although the precise mechanisms involved remain to be determined, 5‑HT7 receptors might play a role in the modulation 
of the glia–neuron interaction within the mPFC, thus exerting an influence on the ability of pyramidal cells to maintain an increased 
activity. Alternatively, it is also possible that inhibitory GABA interneurons within the mPFC (and/or the DR) express a certain level of 
5‑HT7 receptors. As these receptors are usually excitatory, their blockade should induce a disinhibition of pyramidal neurons (and/or 
5‑HT ones). Whatever the different mechanisms responsible for the antidepressant-like properties of 5‑HT7 antagonists, we hypothesize, 
as in the case of (1 & 2), that they are mediated, at least in part, by an increase of the extracellular levels of glutamate within the DR. 
(In this model, the role of DR GABA interneurons, which also receive glutamatergic projections from the mPFC is unclear. However, their 
influence seems to be mostly secondary in the context of a stimulated cortex [21].)
5‑HT: Serotonin; DBS: Deep-brain stimulation; DR: Dorsal raphé; Glu: Glutamate; kai: Kainate; mPFC: Medial prefrontal cortex.
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physiological features, and the potential 
therapeutic perspectives related therewith. At 
the central level, they have been shown to be 
strongly involved in several functions, includ-
ing memory processes [63–68] and the regulation 
of food intake [69,70]. More interestingly, in the 
context of the present review, a single study con-
ducted in the 1990s reported that preferential 
5‑HT

4
 agonists, such as renzapride, seemed to 

be able to facilitate the release of 5‑HT within 
the hippocampal area [71]. It is noteworthy that 
these experiments, initially conducted to bet-
ter understand the mechanisms underlying the 
effect of some anxiolytic drugs [72], brought the 
first clue of a putative role played by 5‑HT

4
 

receptors in AD therapy.
As explained in detail earlier, the possibility 

to acutely, directly enhance central 5‑HT out-
flow with a given class of compounds resulted 
in promising possibilities for the development 
of new ADs, which could display a more rapid 
onset of action than SSRIs and other ‘indirect’ 
agents. First, we decided to assess the ability 
of selective 5‑HT

4
 pharmacological agents to 

influence 5‑HT neuronal impulse flow, mea-
sured using single-cell extracellular recordings. 
When acutely administered, 5‑HT

4
 agonists, 

such as cisapride or prucalopride, are able to 
enhance the firing rate of a subpopulation of 
responding DR 5‑HT neurons (‘responders’), 
which represent approximately 45% of the 
whole [73]. We also observed that prucalopride 
counteracts the inhibitory effect of acute SSRIs 
on DR responders [74]. The 5‑HT

4
-dependent 

control was then assessed in a more global man-
ner, by performing successive recording tracks 
(‘descents’) along the DR to draw a picture of 
the average 5‑HT neuronal firing rate. Both 
prucaloride and RS 67333, another selective 
5‑HT

4
 agonist, enhanced the mean activity 

of 5‑HT neurons when administered 30 min 
before starting the descents [75]. This effect was 
fully blocked by an acute injection of the selec-
tive 5‑HT

4
 antagonist GR 125487 [75]. More 

importantly, it was also present at very simi-
lar levels after chronic administration of each 
drug for either 3 or 21 days [75]. Consistent with 
these findings, the mean firing rate of DR 5‑HT 
neurons was found to be reduced by more than 
50% in 5‑HT

4
 knockout mice, with respect 

to their wild-type littermates [76]. Also, and 
similarly to the acute conditions, the continu-
ous co-administration of either prucalopride 
or RS 67333 with the SSRI citalopram during 

3 days increased 5‑HT neuron activity, with an 
amplitude very similar to that observed when 
each 5‑HT

4
 agonist was given alone [74].

The aforementioned positive inf luence 
exerted by 5‑HT

4
 receptors on central 5‑HT 

neuron activity was paralleled by the appari-
tion of various biological markers within the 
brain, occurring typically after chronic AD 
administration, and postsynaptically reflecting 
an increased 5‑HT transmission. Thus, after 
3  days of chronic administration, RS  67333 
and/or prucalopride were already able to induce 
the manifestation of a 5‑HT

1A
-mediated inhibi-

tory tone on hippocampal pyramidal neurons, 
an increased phosphorylation of CREB and an 
enhancement of adult mitogenesis within this 
region [77]. In agreement with our results, the 
same regimen (using RS 67333) has recently 
been reported to increase 5‑HT release in the 
ventral hippocampus [78]. The 5‑HT

4
 partial 

agonist SL  65.0155 has also been shown to 
facilitate CREB phosphorylation after three 
subchronic administrations, performed within 
a 24‑h timeframe [79]. By contrast, classical ADs 
such as SSRIs produce similar postsynaptic 
effects after only 2 or 3 weeks when given alone 
[8–11,80–83]. Interestingly, in line with our previ-
ous findings, 3 days of combined treatment of 
the SSRI citalopram with either prucalopride or 
RS 67333 augmented both the inhibitory tonus 
exerted by endogenous 5‑HT on hippocampal 
5‑HT

1A
 receptors, and the phosphorylation of 

CREB, with a much higher amplitude than 
what was observed with each 5‑HT

4
 agonist 

on its own [74]. In addition, a 3‑day treatment 
with RS 67333 proved effective in alleviating 
the syndromes thought to reflect ‘depression’ 
in the olfactory bulbectomy and chronic mild 
stress behavioral tests. In the first one, RS 67333 
reduces the hyperactivity of olfactory bulbec-
tomy rats when exposed to a stressful (hyper-
illuminated) environment, with the same ampli-
tude as is observed after 14 days of citalopram 
[77]. A very similar difference in the respective 
kinetics of RS 67333 and citalopram is observed 
concerning their ability to reverse the chronic 
mild stress-induced anhedonia, measured by 
sucrose consumption [77]. It appears, therefore, 
that 5‑HT

4
 agonists are able to trigger AD-like 

effects at least four- to seven-times more rapidly 
than classical molecules do in numerous experi-
mental models [77]. Clinical trials have yet to be 
conducted with such compounds; interestingly, 
both animal [84,85] and human [86] post-mortem 
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studies revealed important changes of 5‑HT
4
 

receptor expression in (pseudo)depressed sub-
jects. In addition, a recent report has shown that 
the p11 protein is apparently required for the 
expression of some behavioral AD-like actions 
elicited by 5‑HT

4
 receptor stimulation [87]. In 

addition, both proteins are co-expressed in 
brain regions relevant for depression, and p11 
increases surface expression of the 5‑HT

4
 recep-

tor and facilitates its intracellular signaling [87]. 
However, anatomical data indicate that both 
5‑HT

4
 mRNA and protein are poorly expressed 

within the rat DR [88,89], with 5‑HT cell bod-
ies being virtually devoid of these receptors 
[88]. Therefore, it appears unlikely that such a 
weak distribution could account for the effects 
described earlier. In the rodent brain, the most 
5‑HT

4
-enriched areas are found in the basal 

ganglia, especially along the nigrostriatal and 
mesoaccumbal dopaminergic pathways, and 
in limbic areas such as the olfactory tubercles 
and the hippocampus [89–91]. Although the lev-
els were reported to be moderate in the cortical 
mantle [89,90], a more detailed examination of the 
available figures revealed that the mPFC (both 
infralimbic and prelimbic subregions) expressed 
substantially more 5‑HT

4
 mRNA and protein 

than other cortical areas [91], a feature also dis-
played by the human brain [92]. Furthermore, 
it had already been reported that the electrical 
stimulation of the mPFC facilitated the activ-
ity of 40–45% of DR 5‑HT cell bodies [21]. 
This proportion was strikingly close to what we 
observed concerning ‘responding’ 5‑HT neurons 
[73]. In addition, an inhibitory, 5‑HT

1A
-mediated, 

‘long-loop feedback’ originating from the mPFC 
has been demonstrated, and was thought to con-
cern approximately half of DR 5‑HT neurons 
[93]. Finally, there was evidence suggesting that 
5‑HT

1A
 and 5‑HT

4
 receptors are mostly co-local-

ized within the same pyramidal neurons in the 
mPFC [94]. Altogether, these data favored the 
possibility that the 5‑HT

4
-dependent facilita-

tory control also originates from the mPFC. To 
confirm this hypothesis, we used herpes simplex 
virus particles, transformed to induce an over-
expression of 5‑HT

4
 receptors in discrete brain 

areas. In a particularly striking manner, the 
microinfusion of viral particles into the mPFC 
induced a marked increase of DR 5‑HT neu-
ron firing rate [75]. Conversely, it had no effect 
when administered in the striatum, the hippo-
campus or the olfactory bulbs [75], three brain 
areas being among those which constitutively 

display the highest 5-HT
4
 receptor expression 

(see earlier). Interestingly, recent data indicate 
that, in contrast to what is seen in the striatum 
and hippocampus, 5‑HT

4
 receptor binding is 

not downregulated in the mPFC after 21 days 
of treatment with the SSRI fluoxetine [95]. This 
result adds further support to the idea that the 
mPFC constitutes a major site of origin of the 
5-HT

4
-mediated positive control on 5-HT neu-

ron activity, considering that this control also is 
not desensitized by long-term (21 days) admin-
istration of a 5-HT

4
 agonist [75]. We propose that 

the stimulation of 5‑HT
4
 receptors within the 

mPFC triggers a positive, ‘long-loop feedback’ 
on DRN 5‑HT function (Figure 1). According 
to this model, the projections connecting the 
mPFC to the DRN, and using glutamatergic 
neurotransmission, would constitute the vector 
of the feedback.

5‑HT7 receptor antagonists: a possible role 
for mPFC glial cells
5‑HT

7
 receptors constitute another 5‑HT recep-

tor subtype that has recently received attention 
as a new target for the development of fast-acting 
ADs. These receptors are the latest identified 
members of the 5‑HT receptor family and have 
been found to activate adenylate cyclase [96–100]. 
Earlier studies have suggested that the therapeutic 
action of ADs might be mediated, at least in part, 
by 5‑HT

7
 receptors. Thus, chronic treatment 

with AD drugs led to a downregulation of these 
receptors in the hypothalamus [101,102] and to a 
reduction of the effectiveness of their activation 
within the rat hippocampus [103]. Conversely, sev-
eral atypical antipsychotics, such as amisulpride, 
risperidone, olanzapine or aripiprazole, which 
possess antagonistic properties for the 5‑HT

7
 

receptors [98,104–106], have therapeutic indications 
as an adjunctive treatment for depression [107–113]. 
In particular, recent studies have demonstrated 
that the AD actions of amisulpride and aripip-
razole require 5‑HT

7
 receptors, because these 

agents had no AD-like effect in 5‑HT
7
 receptor 

knockout mice compared with what was seen in 
their wild-type littermates [114,115]. More direct 
evidence of the involvement of 5‑HT

7
 receptors 

in AD responses was provided by studies showing 
that pharmacological blockade of 5‑HT

7
 recep-

tors, using the potent and selective 5‑HT
7
 recep-

tor antagonist SB‑269970 [116–118], or inactivation 
of the 5‑HT

7
 receptor gene, produces AD-like 

effects in behavioral rodent models [119–123]. In 
addition, similarly to SSRIs, the blockade or 
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inactivation of the 5‑HT
7
 receptors affect sleep 

parameters in a pattern opposite to that seen in 
depressed patients [121,124]. Finally, it has been 
reported that SB‑269970 potentiated both the 
effects of several ADs, and the rapid eye move-
ment sleep suppression induced by the SSRI 
citalopram [123,125,126], suggesting that blockade 
of 5‑HT

7
 receptors may facilitate the actions of 

AD treatments. In keeping with this hypothesis, 
we recently reported that 5‑HT

7
 antagonism 

prevents the suppressant effect of SSRIs on DR 
5‑HT neuron electrical activity [119].

More interestingly, there is recent evidence 
suggesting that the AD properties of 5‑HT

7
 

receptor antagonists may rise with a faster onset 
of action than classical compounds. As outlined 
previously, all ADs have been demonstrated to 
promote hippocampal neurogenesis and, in turn, 
such a cellular plasticity seems to be essential 
for the achievement of an AD response [127–129]. 
Whereas cell proliferation in the rat hippocampus 
is enhanced after 2–3 weeks of treatment with 
classical molecules [11,130], a 1‑week treatment 
with the 5‑HT

7
 receptor antagonist SB‑269970 

was sufficient to increase this same parameter 
[119]. Also in support of a faster AD-like pro-
file of 5‑HT

7
 receptor antagonists, we reported 

that a 1‑week treatment with SB‑269970 fails to 
modify the firing activity of DR 5‑HT neurons, 
but desensitizes the inhibitory action of 5‑HT

1A
 

autoreceptors [119]. By contrast, a similar reduced 
5‑HT

1A
 receptor responsiveness takes place only 

after 2–3 weeks of treatment with other ADs 
[131–133]. In addition, our recent data showing 
that SB‑269970 counteracted the depressive-like 
behavior in olfactory bulbectomized rats after a 
7‑day treatment, while fluoxetine remained inef-
fective within the same timeframe [119], further 
supports the hypothesis that 5‑HT

7
 receptor 

antagonists may act with a more rapid onset of 
action. The precise mechanism underlying the 
AD-like effects of 5‑HT

7
 receptor antagonism 

is presently not known. Our electrophysiological 
data give direct evidence of a negative control 
exerted by 5‑HT

7
 receptors on 5‑HT neuron 

activity. Thus, the systemic administration of 
the potent and selective 5‑HT

7
 receptor ago-

nist AS‑19 [134] inhibited the firing rate of DR 
5‑HT neurons in anesthetized rats, an effect pre-
vented by prior systemic injection of SB‑26970 
[119]. This inhibitory control seems to be indi-
rect. Indeed, biochemical studies performed on 
midbrain slices suggest that 5‑HT

7
 receptors are 

not located on 5‑HT-containing neurons in the 

DR [135,136]. Interestingly, microdialysis stud-
ies have found that SB‑269970 enhanced the 
release of 5‑HT induced by citalopram within 
the mPFC, suggesting that this region could be 
implicated in the aforementioned synergic inter-
action between 5‑HT

7
 receptor antagonists and 

ADs [125]. In support of this hypothesis, func-
tional 5‑HT

7
 receptors, positively coupled to 

adenylyl cyclase, have been identified in cultured 
astrocytes derived from the rat cortex [137,138]. 
Furthermore, a continuous (3 day) exposure to 
the ADs mianserin or amitriptyline enhanced 
5‑HT

7
 receptor-mediated adenylyl cyclase acti-

vation of cortical astrocytes [138]. Considering 
the recently evidenced importance of mPFC glia 
on the effects of ADs [59], and the fact that mPFC 
astrocytes are directly activated by SSRIs ADs 
[139], 5‑HT

7
 receptor antagonists might, there-

fore, act via a glia-mediated modulation of the 
cortico-DR transmission to exert their AD-like 
influence. Indeed, it has been shown from single 
cell real-time PCR studies that 5‑HT

7
 recep-

tors are not directly expressed by glutamatergic 
pyramidal neurons within the mPFC [94]. This 
latter data caused us to propose the alternative 
hypothesis that 5-HT

7
 receptors localized in 

GABAergic interneurons of the mPFC (and/or 
of the DR) may also contribute to the aforemen-
tioned effects [97]. The possible mechanisms dis-
cussed earlier are summarized in Figure 1; what-
ever the exact cellular localization of the mPFC 
5‑HT

7
 receptors involved, we hypothesize that 

their blockade induces an enhanced release of 
glutamate in the DR, which in turn increases 
5‑HT neuron activity.

Conclusion & future perspective
The data presented earlier confirm that it is actu-
ally possible to obtain faster AD responses than 
what has been achieved using standard molecules. 
They also point out that current pharmacologi-
cal approaches have not reached their maximum 
efficacy/onset of action, and that the supposedly 
incompressible long delay of action related to 
monoaminergic drug treatment is not an immu-
table dogma. Therefore, the connection existing 
between the mPFC and DR 5‑HT neurons appear 
to constitute a critical vector to develop new AD 
strategies. The glutamatergic neurotransmission 
stemming from mPFC pyramidal neurons can 
apparently act as a potent motor to boost central 
5‑HT function, whether it is triggered by a direct 
electrical stimulation or by a pharmacological one 
(Figure 1). It seems that the function of this motor 
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is particularly dependent on the ‘fueling’ proper-
ties of the glial system, to the extent that manipu-
lating the mPFC glia results in tangible effects on 
depression-related behaviors. Several studies have 
pointed out that the blockade of some types of 
glutamate receptors, such as NMDA receptors, 
can also produce very fast AD-like effects. These 
effects appear to be related to the existence of a 
complex network within the mPFC itself, involv-
ing inhibitory interneurons and/or reciprocal col-
laterals, which regulate the activity of pyramidal 
cells [140]. Interestingly, the fast AD-like effects of 
the NMDA antagonist ketamine are paralleled by 
a significant increase of synaptogenesis within the 
mPFC [140]; it is tempting to speculate that this 
enhanced connectivity may improve the excit-
ability of pyramidal neurons, resulting, again, in 
an increased release of glutamate in the vicinity 
of 5‑HT cell bodies. Moreover, these very results 
demonstrate that, at least within the mPFC, 
morphological changes can be achieved within a 
very rapid time-frame by using pharmacological 
tools. They therefore contribute to re-establish a 
connection between two concepts in the field of 

‘fast AD’ research. Should indeed the tools be 
of viral, molecular, pharmacological, electrical or 
even magnetic nature, as the increasing use of 
repetitive transcranial magnetic stimulation in 
the field of depression already gives a glimpse of, 
modulating the activity of the descending mPFC-
DR pathway will likely constitute a major strategy 
to develop new fast-acting AD treatments in the 
near future.
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