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ABSTRACT 

Chemotherapy-induced cognitive impairment or chemobrain is a frequent consequence 
of cancer treatment with many psychiatric features. Ironically, the increasing efficacy of 
chemotherapy leaves growing number of patients alive with chemobrain. Therefore, there is 
an urgent need for strategies capable of returning cancer survivors back to their pre-morbid 
quality of life. Molecular mechanisms of chemobrain are largely unknown. Over the last 
decade there was a lot of emphasis in preclinical research on inflammatory consequences of 
chemotherapy and oxidative stress but so far none of these approaches were translated into 
clinical scenario. The co-administration of chemotherapy with protective agents was evaluated 
preclinically but it should be introduced with caution as potential interference was not yet 
studied and that could blunt therapeutic efficacy. Stem cell-based regenerative medicine 
approach has so far been exploited very sparsely in the context of chemobrain and the focus 
was on indirect mechanisms or neuronal replacement in the hippocampus. However, 
there is evidence for widespread white matter abnormalities in patients with chemobrain. 
This is quite logical considering life-long proliferation and turnover of glial cells, which 
makes them vulnerable to chemotherapeutic agents. Feasibility of glia replacement has 
been established in mice with global dysmyelination where profound therapeutic effect 
has been observed but only in case of global cell engraftment (across the entire brain). 
While global glia replacement has been achieved in mice translation to clinical setting 
might be challenging due to much larger brain size. Therefore, a lot of attention should 
be directed towards the route of administration to accomplish widespread cell delivery. 
Techniques facilitating that broad cell distribution including intra-arterial and intrathecal 
methods should be considered as very compelling options. Summarizing, chemobrain is 
a rapidly growing medical problem and global glia replacement should be considered as 
worthwhile therapeutic strategy.
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(IQ) and fatigue are also important predictors of 
chemobrain [23]. Even mild chemobrain-related 
deficits have psychiatric consequences, especially 
when these problems remain untreated. While 
immunotherapy quickly gains popularity and 
is not associated with cognitive deficits [24], 
it is only effective in 10-20% of patients, so 
chemotherapy is still a mainstay of cancer 
treatment. Given the lack of effective prevention 
strategies or treatments, diminished quality 
of life is a significant concern in survivors. As 
mentioned above, since patients are surviving 
longer following treatment, the population 
affected by these deficits is growing rapidly and 
effective treatment is urgently needed. Notably, 
the negative effects of chemotherapeutic drugs 
have been convincingly reproduced in animal 
models [25]. 

 � Molecular mechanisms

The molecular mechanisms of chemobrain 
still need to be elucidated and that has been 
recognized as a priority by the National Cancer 
Institute which issued request for applications 
for broad scope neuroscience approach to 
chemobrain [26]. A combination of oxygen 
radical production and cytokine dysregulation 
are the main suspects for chemobrain induction 
[27-29]. It has been shown that aggressive, three-
drug chemotherapy consisting of a combination 
of docetaxel, adriamycin, and cyclophosphamide 
led to a cytokine dysregulation and disruptions 
in neuroplasticity [30]. The mice subjected 
to chemotherapy in this study have spent less 
time in the target quadrant of the water maze 
in comparison to control mice. These findings 
were well aligned with decrease of manganese 
enhancement on magnetic resonance imaging 
(MRI) in the hippocampus, as well as striking 
elimination of dendritic spines in cortex as 
visualized by in vivo transcranial two-photon 
imaging, which indicates abnormality in 
neuroplasticity. These behavioral and imaging 
chemotherapy-induced changes highly 
correlated with serum and brain levels of pro-
inflammatory cytokines: IL-6 and TNF-α. There 
was also noted decrease of anti-inflammatory 
cytokines IL-4 and IL-10 in serum and brain in 
majority of animals subjected to investigation. 
These changes have been ameliorated by co-
treatment with natural polyphenol–resveratrol 
administered orally at a daily dose 100 mg/kg 
[31]. The concept of cytokine dysregulation as 
widely occurring consequence of chemotherapy 
has also been a subject of a recent review [32]. 
In vitro experiments on PC12 cells using mass 

Chemobrain 

Psychological consequences of anti-cancer 
therapy have been raised since the 1950s [1]. 
Common psychiatric symptomatology among 
hospitalized cancer patients [2] inspired more 
detailed analysis of mental status in early 1980s, 
which revealed cognitive impairment with 
chemotherapy as a major associated variable 
[3,4]. Further research provided a vast body of 
evidence that, indeed chemotherapy is associated 
with short- and long-term mood alterations and 
cognitive deficits, characterized by disruptions 
in learning and memory, impaired attention, 
concentration, information processing speed, 
and executive function [5-8]. Then the term 
‘chemobrain’ has been coined for chemotherapy-
induced cognitive impairment in 2000s [9]. 
Among executive functions, inhibition appears 
relatively spared from the effects of chemotherapy, 
whereas impairments in shifting and updating 
are more common [10]. There is also a notion 
that self-initiated retrieval processes rather than 
encoding are implicated in prospective memory 
impairment among breast cancer survivors [11]. 
The recent study of patients with colorectal 
carcinoma treated with 5-fluorouracil with or 
without oxaliplatin confirmed the presence of 
a decline in executive function at 12 month 
time point comparing to patients, who had not 
received chemotherapy due to localized character 
of the disease [12]. 

Ironically, while increasingly effective 
chemotherapeutics provide a cure or satisfactory 
long-term control of disease more frequently, 
there is rapidly growing number of patients 
with chemobrain. This problem must be 
tackled to bring patients back to their pre-
morbid quality of life. Chemobrain is most 
pronounced in population of patients with 
breast cancer with a frequency reaching 80% 
[13], but it also includes lung cancer (30% of 
patients) [14], Central nervous system (CNS) 
malignancies [6], testicular cancer [15], and 
hematologic malignancies [16-18], and these 
deficits appear following treatment with various 
chemotherapeutic agents that have different 
mechanisms of action [6]. Pre-treatment 
cognitive screening did not reveal profound 
cognitive impairment [19], although some 
studies point to brain structure abnormalities also 
in cancer patients not subjected to chemotherapy 
[20-22]. These cognitive and psychiatric deficits 
are progressive and persist following the cessation 
of therapy [7]. Premorbid intelligence quotient 
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spectrometry revealed that cisplatine may affect 
cell membrane lipids leading to abnormal 
exocytotic release of neurotransmitters [33]. 
Alterations in gene expression dynamics 
found in rats following mithramycin (MTR) 
administration, may be responsible for observed 
behavioral impairment [34]. It was found that 
immediate molecular effects of MTR were 
minimal and ascribed to different unconnected 
trajectories, while three months later the 
expression of over 1000 genes was altered 
and they converted into specific molecular 
pathways. In rat a rat brain endothelial cell line 
(RBE4) oxaliplatin induced the disassembly 
of the tight junctions, the critical components 
of the blood brain barrier integrity, and blood 
components leaking into the brain may trigger 
brain dysfunction [35]. Carboplatin impairs 
dopamine release and uptake in rats as measured 
by fast-scan cyclic voltammetry on acute coronal 
brain slices post mortem [36] and whole brain 
preparations from zebrafish [37], which may 
potentially be a source of mood disturbance. 
Acute treatment with doxorubicin affects 
glutamate neurotransmission in the mouse 
frontal cortex and hippocampus as measured 
by novel glutamate-selective microelectrode 
arrays [38]. Notably, glutamate clearance is 
delayed about 50 % in frontal cortex and dentate 
gyrus. In a case-control study in breast cancer 
patients mood changes were observed following 
everolimus, though molecular mechanisms 
were not investigated [39]. Fascinating 
observation was transgenerational induction of 
chemobrain in offspring from animals subjected 
to chemotherapy [40]. While no alteration of 
γH2AX levels suggests no DNA damage but some 
abnormalities in expression of proteins involved 
in DNA repair such as PCNA, in apoptotic 
pathways such as BCL2 and AKT1, and in DNA 
methylation including DNMT1 and MeCP2. 
Moreover, some alterations in expression of 
proteins involved in myelin production such as 
MBP and MYT1L were pronounced. In addition 
global transcriptome analysis of the whole brains 
displayed changes at least in 200 genes in progeny 
with western blot confirmation of FOXP2 and 
ELK1 proteins were confirmed by western blot 
analysis. Vascular endothelial growth factor 
(VEGF) signaling has been considered in the 
context of chemobrain; however, while plasma 
level of VEGF increases after anthracycline-based 
and taxane-based chemotherapy introduction in 
patients with breast cancer, it does not correlate 
with chemotherapy-associated cognitive 
impairment [41]. However, tyrosine kinase 

inhibitor, sunitinib malate, induces cognitive 
impairment in mice via dysregulation of VEGF 
receptor signaling. [42].

 � Therapeutic approaches: small 
molecules, through diet to stem cells

Various therapeutic approaches have been 
attempted for chemobrain. A 5-fluorouracil-
induced cognitive impairment in rats has been 
prevented with KU-32: a small molecule, 
C-terminal inhibitor of the molecular 
chaperone of heat shock protein 90 [43]. 
Therapeutic mechanism of Ku-32 is likely 
through electrophysiological and bioenergetic 
neuroprotection [44]. Another small-molecule: 
pifithrin [45], an inhibitor of mitochondrial 
p53 accumulation and a popular anti-diabetic 
medication [46] both prevented cisplatin 
induced chemobrain in mice. Fluvoxamine (Flv) 
alleviates paclitaxel-induced (Px) chemobrain 
via alleviation of endoplasmatic reticulum stress 
through induction of sigma-1 receptor. The 
purpose of this study was to investigate whether 
Flv could alleviate Px-induced neurotoxicity 
in vitro. [47]. It has been recently shown that 
co-administration of the antioxidant drug, 
2-mercaptoethane sulfonate sodium [48,49], 
astaxanthin, a naturally occurring carotenoid 
[50], catechin, a tea polyphenol [51] as well as 
rutin, a glycoside abundant in citrus fruits [52] 
prevent doxorubicin-induced cognitive decline 
in animal model and the suggested mechanism is 
through impact on oxidative and inflammatory 
machineries. Of note, however that blunting 
oxidative stress may also potentially decrease anti-
cancer activity [53]. It is important as it was shown 
before that antidepressant drugs can actually 
decrease cytotoxic action of temozolomide, 
a chemotherapeutic agent routinely used in 
adjuvant treatment of glioblastoma due to 
blood brain barrier permeability [54]. Different 
preventive strategies against neurotoxicity of 
doxorubicin and mitoxantrone were effective 
in vitro, which further suggests dissimilar 
mechanisms responsible for chemobrain. 
Mitoxantrone-induced toxicity was partially 
reverted by antioxidant, while doxorubicin-
induced toxicity was rather ameliorated by 
caspase inhibitor or protein synthesis inhibitor 
[55]. Female rats treated with chemotherapy 
mix: cyclophosphamide, methotrexate and 
5-fluorouracil recovered weight faster, showed 
superior cognitive abilities and lower levels 
of depressive-like behavior when treatment 
with cotinine, an alkaloid found in tobacco 
and predominant metabolite of nicotine was 
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high-dose chemotherapy with carmustine, 
cyclophosphamide and cisplatin with support of 
autologous hematopoietic progenitor cell support 
[64]. The long-term study in patients with 
breast cancer treated with cyclophosphamide, 
methotrexate and 5-fluorouracil has shown 
that such white matter abnormalities often 
persist decades after chemotherapy [65]. The 
next study including a relatively large cohort 
of patients (over 100 in total) subjected to 
various chemotherapeutic regimes revealed 
that small regional volumes of white matter are 
accompanied by gray matter shrinkage in areas 
involved in cognitive processing, such as grey 
prefrontal cortex and para-hippocampal gyrus 
[66]. Not surprisingly, it was then shown that 
there is reduction of total brain volume in patients 
subjected to chemotherapy, but unexpectedly no 
difference in volume of hippocampus was found 
in another study of elderly breast cancer survivors 
treated with 6 cycles of cyclophosphamide, 
methotrexate and 5-fluorouracil between 1976 
and 1995 [67]. Frontal grey matter reduction 
correlated with executive function complaints 
in a study of over 20 survivors of breast cancer 
treated with a variety of chemotherapy regimens 
[68]. The white matter abnormality has been also 
confirmed by reduction of fractional anisotropy, 
and it also correlated with self-reported cognitive 
failure questionnaire scores [69-73]. Altered 
organization of global brain networks was found 
by resting state functional MRI (fMRI) in 
survivors of breast cancer treated with various 
regimens of chemotherapy [74]. Thus default 
mode network was also proposed as a biomarker 
of chemobrain [75]. fMRI during a working 
memory task revealed larger and more diffuse 
areas of activation in bilateral frontal and parietal 
regions in the twin with breast cancer treated 
with doxorubicin, cyclophosphamide and 
docetaxel [76]. Another fMRI study revealed 
slower reaction times in fourteen women 
with breast cancer subjected to chemotherapy 
with two regimens: cyclophosphamide, 
methotrexate and 5-fluorouracil or adriamycin, 
cyclophosphamide, and taxol/taxotere compared 
to controls during the recall component, even if 
both groups revealed similar response accuracy 
[77]. There was also reported reduced activity 
in the left lateral prefrontal cortex in 25 breast 
cancer survivors treated with seven various 
chemotherapy regimens during the card-sorting 
task, which required determination implicit 
rules governing the computer’s categorization of 
geometric figures. It came along with increased 
perseverative errors and slowed processing speed 

introduced after chemotherapy [56]. It has 
been shown that low intensity physical exercise 
prevents cognitive impairment in rats by 
enhancing hippocampal neuroplasticity and 
mitochondrial function in doxorubicin-induced 
chemobrain [57]. Analogical study has been 
launched in patients to assess the value of  
exercise in prevention of chemobrain [13,58]. 
However, the optimism should be rather 
moderate regarding outcome as the well-
controlled, randomized trial failed to show benefit 
of moderate to high intensity training in people 
with dementia [59]. This is important to notion 
as cognitive impairment due to chemobrain 
can be similar to other causes of dementia. The 
dietary intervention based on enrichment in 
long-chain, marine-derived omega-3 fatty acids 
and reduction of sugar intake was effective in 
rodent models and may accordingly reduce 
long-term impact of chemotherapy on cognitive 
decline in patients [60]. Multiple sources stated 
that increased activity of histone deacetylases 
(HDACs) play a detrimental role in chemobrain, 
but surprisingly sodium valproate, an inhibitor of 
HDACs aggravated neurotoxicity of doxorubicin 
in Wistar rats, thus any interventions for 
chemobrain needs to be introduced with caution 
[61]. 

There were two reports of stem cell-based 
approach to chemobrain, both in rodent models. 
Adriamycin-induced cerebral degenerative 
changes in rats were ameliorated by systemic 
administration of mesenchymal stem cell 
therapy. A reciprocal relation was recorded 
between the extent of regeneration and the 
existence of undifferentiated mesenchymal 
stem cells [62]. Cyclophosphamide-induced 
cognitive impairments in rats were resolved by 
intrahippocampal transplantation of human 
neural stem cells (ENStem-A, EMD Millipore). 
The satisfactory survival of engrafted cells was 
observed (8%), with subsequent differentiation 
toward neuronal and astroglial lineages, which 
led to reduced neuroinflammation (significant 
reduction of activated microglia) and restoration 
of dendritic arborization [63]. None of the 
stem cell-based approaches to treat chemobrain 
has been followed by an attempt of clinical 
translation.

 � Neuroimaging

Neuroimaging is an essential tool for effective 
bench-to-bed translation. White matter changes 
have been proposed as a hallmark of chemobrain 
in patients with breast cancer treated with 
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compared with both non-chemotherapy and 
healthy participants [78]. No differences on 
the fMRI of a verbal auditory n-back task was 
found but high load task conditions revealed 
a decrease in performance at 1 month, with 
improvement at 1 year [79]. There was also 
observed altered cerebral blood flow using 
arterial spinal labeling MRI one month after 
systemic chemotherapy using several regimens 
in breast cancer survivors [80]. Administration 
of doxorubicin in naïve rats decreased 
18Fluorodeoxyglucose (18F-FDG) uptake only 
in the prefrontal cortex, which correlated well 
with deficits in novel object recognition while 
no impairment in contextual fear conditioning 
and these observations emphasize problems with 
executive functions [81]. Donepezil improved 
both cognitive function as well as brain glucose 
metabolism measured by 18F-FDG positron 
emission tomography (PET) in rats treated with 
doxorubicin or cyclophosphamide [82]. No 
longitudinal PET study has been performed in 
patient with chemobrain [83], but the frontal 
hypometabolism was detected in pilot study 
by PET in ten elderly breast cancer survivors 
treated with standard multi-agent regimens 
including cyclophosphamide, methotrexate and 
5-fluorouracil or an anthracycline (doxorubicin), 
who were at least 50 year old at diagnosis and older 
than 65 years at the examination as well as survived 
a minimum of ten years without recurrence [84]. 
The structural connectome approach revealed 
significant decrease in local efficiency, network 
clustering and small worldness in patients with 
testicular cancer recruited between June 2012 
and December 2013 subjected to chemotherapy 
with bleomycin, etoposide and cisplatine in 
comparison to surgery-only group [85]. 

Glia replacement

 � Context of chemobrain 

The primary mechanism of chemotherapy is to 
interfere with the process of cell division and 
while cancer cells are intended target other 
dividing cells are unequivocally affected. In 
the brain the most studied adverse effect of 
chemotherapy was impairment of hippocampal 
neurogenesis [86,87]. Dividing cells, however, 
are not limited to neurons; in the adult brain, 
there is a continuous turnover of glial cells. 
Gliogenesis and myelination are dynamic and 
constantly modulated processes that occur 
in both humans and rodents, are strongly 
associated with neuronal activity, and are 

required for learning new tasks [88]. Global 
replacement of mouse glial cells with human 
counterparts improved learning and memory. 
This work elevates the role of glia from simply 
supporting function to participating in higher 
brain functions as well as suggests evolutionally 
acquired new functionality in humans [89]. 
Initially, these cells were shown to be therapeutic 
in animal models of myelin disorders, such as 
transverse myelitis [90] and dysmyelinations 
[91]. However, our preliminary experiments 
have shown that their therapeutic activity is 
far beyond re-myelination alone and seems to 
be primarily related to the trophic support of 
neurons, as latter this process occurs much faster 
following implantation than the production of 
compact myelin [92]. Moreover, the in vitro 
data suggests high anti-inflammatory activity of 
glial restricted precursors (GRPs). Glia play a 
prominent role in neurodegeneration, given that 
transplantation of GRPs derived from patients 
with amyotrophic lateral sclerosis recapitulate 
the disease in mice [93]. Similar effects were 
achieved with Huntington’s disease, where 
transplantation of healthy GRPs ameliorated 
neurological symptoms in a mouse model [94]. 
The success of GRPs in animal models of myelin 
disorders as well as models of neurodegeneration 
make them a very attractive therapeutic option 
for psychiatric disorders, particularly where 
the glial component might be heavily affected, 
such as in chemobrain. Considering the above, 
we would like to encourage expanding the 
search for mechanisms underlaying chemobrain 
beyond interference with neurogenesis [95]. 
We hypothesize that chemotherapy may 
interfere with the process of gliogenesis through 
decreasing the pool of proliferating precursors 
of glia. Such disruption of gliogenesis results 
in insufficient support of neurons throughout 
the CNS, a decrease of tissue integrity, and 
widespread behavioral disruptions [96]. 

 � Glial progenitors

Two different classes of glial precursors deserve 
attention in the context of chemobrain, first 
is post-developmental adult pool of tissue 
resident precursors as a subject to damage 
during chemotherapy and second, are isolated 
precursors meant for transplantation-based 
therapy to prevent or restore neurological deficits 
following chemotherapy. Adult brain contains 
tissue resident mitotically active progenitors 
of glia that continuously replace mature glial 
phenotypes. Turnover of glia throughout life has 
been reported for healthy post-developmental 
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brain in both rodents and humans [97]. In 
disease states, such as local demyelination, 
these progenitors are responsible for the repair 
and remyelination [98]. Being proliferatively 
active, these progenitors are highly vulnerable 
to chemotherapeutics. Indeed, carmustine, 
cisplatin, and cytosine arabinoside (cytarabine), 
deoxyribonucleic acid (DNA) cross-linkers and 
an anti-metabolites, applied at clinically relevant 
concentrations were even more damaging to 
cultured progenitor cells than they are for 
several cancer cell lines. When administered 
systemically in mice, these chemotherapeutics 
suppressed proliferation and induced cell death 
of progenitor cells throughout the CNS and the 
effect lasted for weeks after drug administration 
ended [99]. More studies are needed to fully 
understand in what extent gliogenesis contributes 
towards chemobrain but there is strong evidence 
supporting that hypothesis and once that 
link is fully established, replacement of these 
populations will be a new interesting therapeutic 
approach. This approach however depends on the 
access to highly potent and safe transplantable 
glial progenitor cells. Developing brain is a rich 
source of various classes of glial progenitors. 
During development the first glial phenotype to 
appear is radial glia. Radial glia is recognized for 
their role in guiding migration of neurons and 
multipotency capable of differentiating towards 
both mature neurons and glia [100]. Later 
in development more cells expressing neural/
glial antigen 2 (NG2) proteoglycan (NG2 glia) 
were identified as progenitor pool with more 
restricted differentiation capacity generating 
both oligodendrocytes and astrocytes [101]. 
With their differentiation repertoire limited to 
glial phenotypes these cells have been called glia-
restricted progenitors (GRPs). Peak gliogenesis 
occurs during second trimester pregnancy and 
robust and reproducible isolation protocols 
have been established to derive GRPs based on 
expression of surface marker A2B5 from various 
species including mouse [102] or human [103] 
fetal tissue. These multipotent glial progenitors 
can be collected at lower efficiency also at early 
postnatal stages; however, by 3 weeks after 
birth in rats and mice, their frequency appears 
to be much reduced or virtually lost [104]. The 
disadvantage of primary GRPs as a cell source is 
that they are derived from aborted human fetuses 
and, similar to other human-derived tissues, 
such as cadaveric ß-islet cells, there would be a 
severe shortage of the cells once therapy becomes 
available for a larger population of patients. 
To address this problem protocols have been 

established to derive GRPs from pluripotent stem 
cells including induced pluripotent stem cells. 
However, major advantage of primary GRPs is 
their complete developmental commitment and 
very low risk of tumor formation [105]. 

 � Cell delivery

When considering cell-based therapy for brain 
disorders it is important to focus on selecting 
appropriate strategy for cell delivery. This is 
particularly important when the disease is 
multifocal or global as in case of chemobrain 
where therapeutic cells need to be delivered to 
the entire brain and perhaps the spinal cord 
[95]. Stereotaxic intra-parenchymal injection has 
important advantage of high precision; however, 
transplanted cells cover only small portion of the 
CNS [106]. Cerebrospinal fluid (CSF) is another 
gateway to the brain and with large surface area 
of the CNS in contact with CSF it introduces 
opportunity for broad cell distribution. Indeed, 
we have shown in neonatal mice that intra-
ventricular transplantation results in excellent, 
global engraftment with cells found throughout 
the neuraxis, including the entire length of 
the spinal cord [92]. Human brain however 
due to significantly larger size is more difficult 
target and thank to non-invasive MR imaging 
it has been shown that stem cells infused into 
lateral ventricle in pediatric patient are subject 
to sedimentation with cells accumulating within 
posterior portions of ventricular system [107]. 
Embedding the cells in injectable biomaterials 
is one strategy that may prevent displacement 
of injected cells and improve delivery precision 
[108,109]. Intravascular route is taking 
advantage of vast network of blood vessels and 
that is important advantage when global cell 
delivery is desired. The most straightforward 
and frequently utilized approach is intravenous 
injection and while technical ease and safety are 
strong advantages, cells injected intravenously 
are trapped by filtering organs and only very 
small fraction is able to reach the brain as 
it was shown in stroke model using Tc99m 
imaging [110]. To utilize intravascular delivery 
while avoiding trapping in filtering organs it is 
required that the cells are injected intraarterially. 
This route introduces unique opportunity to 
select artery feeding target structure and deploy 
the cells directly into that vessel potentially 
achieving high engraftment efficiency. Indeed, 
significant effort has been directed towards 
developing intraarterial cell delivery as safe and 
efficacious method. Cell labeling with iron 
oxide nanoparticles for real-time monitoring of 
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intraarterial cell delivery facilitated visualization 
of cell engraftment, which proved to be highly 
variable [111]. Engineering of GRPs for 
enhanced expression of adhesion molecule VLA-
4 resulted in their improved homing in rat model 
of inflammation [112] and the same strategy was 
shown to enhance diapedesis of GRPs into the 
brain parenchyma in rats with stroke [113]. The 
advances in image analysis allows for a robust, 
single-cell, high-throughput screening for cell 
engineering strategies using microfluidic devices 
to optimize cell docking to vessel wall [114]. 
Intraarterial injection is associated with a risk 
of excessive engraftment and microembolism 
thus careful studies are needed to establish safety 
practices developing strategies for risk mitigation 
[115]. Intra-arterial injection was thought to 
provide high precision and reproducibility for 
cell injection; however, uncertainty about the 
final destination of injected cells proved to be 
high [111] and that was a stimulus to utilize 
imaging tools, particularly MRI-guidance to 
improve predictability and reproducibility of 
targeting [116]. 

Conclusions

Chemotherapy induces cognitive impairments, 
with executive function being primarily affected 
and these impairments are not present in 

patients with localized disease with no adjuvant 
therapy or subjected to immunotherapy. Variety 
of agents have been used in animal models for 
mitigating chemobrain, but notably most studies 
utilized naïve animals thus precluding testing for 
potential blunting of anticancer drug activity. 
Even though many methods to counteract 
chemobrain were used in animal studies, none 
has been effectively translated to clinical scenario. 
Neuroimaging revealed long-lasting white matter 
abnormalities in patients with chemobrain, 
vulnerability of glia to chemotherapy should 
not be a surprise because of constant turnover 
relying on proliferation of glial progenitors. Glial 
progenitors are both victims of chemotherapeutic 
drugs and excellent therapeutic target. Therefore, 
global glial replacement might be an ultimate 
measure to address the very compelling need for 
highly effective therapeutic method to eradicate 
chemobrain, and that strategy deserves attention 
and support. Global cell replacement requires 
effective routes for cell administration to the 
brain and intra-arterial and intrathecal routes 
seems to be particularly attractive in this aspect.
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