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Biased agonism at serotonin 
5‑HT1A receptors: preferential postsynaptic activity for 
improved therapy of CNS disorders

Practice points
�� Serotonin or 5‑hydroxytryptamine (5‑HT)1A receptors are attractive targets for pharmacotherapy of pathologies 

associated with dysfunctional serotonergic neurotransmission, including anxiety, depression, Parkinson’s 
disease, pain and schizophrenia.

�� 5‑HT1A receptors are expressed both as presynaptic autoreceptors on serotonergic cell bodies in the raphe 
and as postsynaptic heteroreceptors in multiple brain regions including the cortex, hippocampus, septum  
and hypothalamus.

�� The signaling cascades elicited by 5‑HT1A receptor activation differ between brain regions: different G‑protein 
subtypes, different second messengers and different neurochemical read-outs.

�� The concept of ‘biased agonism’ or ‘functional selectivity’ asserts that agonists can preferentially direct 
receptor signaling to specific intracellular responses. This opens the possibility of targeting receptors in specific 
cellular environments or brain regions.

�� F15599 is a selective 5‑HT1A receptor agonist that exhibits biased agonism, preferentially activating Gai 
versus Gao G‑protein subtypes. F15599 preferentially activates ERK1/2 phosphorylation more than G‑protein, 
receptor internalization or adenylyl cyclase inhibition.

�� F15599 stimulates rat medial prefrontal cortex pyramidal neuron electrical activity and dopamine release 
(controlled by postsynaptic 5‑HT1A receptors) at low doses that do not inhibit raphe serotonergic neuron 
electrical activity or hippocampal 5‑HT release (controlled by presynaptic 5‑HT1A receptors). 

�� F15599 preferentially stimulates c-Fos expression and ERK1/2 phosphorylation in rat prefrontal cortex, with less 
pronounced effects in the raphe. This preferential postsynaptic activity is not observed with other 5‑HT1A agonists.

�� In rats F15599 exhibits potent antidepressant-like activity in the forced swim test, inhibits stress-induced 
ultrasonic vocalization and attenuates phencyclidine-induced cognitive impairments in reversal learning, in novel 
object recognition and in a hole-board test.

�� At ‘antidepressant’ doses in rats, F15599 does not induce serotonin syndrome, does not disrupt attentional 
performance, does not impair working memory and does not inhibit prepulse inhibition of startle response.
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Since the identification of serotonin (5‑hydroxy‑
tryptamine [5‑HT]) as a CNS neurotransmitter 
in 1954 [1–3], extensive investigation has been 
devoted to its complex functions. Indeed, 5‑HT 
interacts with 13 receptor subtypes, divided into 
seven families (5‑HT

1
 to 5‑HT

7
) based on amino 

acid sequence and functional homologies [4]. In 
addition, functionally distinct splice variants 
occur in 5‑HT

4
 and 5‑HT

7
 receptors [5], and 

5‑HT
2C

 receptors undergo RNA editing that 
modifies the receptor’s amino acid sequence and 
its constitutive activity [6]. 5‑HT

1A 
receptors have 

attracted particular interest because they exert 
inhibitory influence on serotonergic tone, are 
widely distributed in postsynaptic brain regions, 
such as the cortex, septum and hippocampus, and 
are implicated in the control of mood, cognition 
and pain [7–10]. 

Accordingly, 5‑HT
1A 

receptors are targets for 
pharmacotherapy of a variety of CNS disorders 
(Table 1). For example, the partial agonists bus‑
pirone and tandospirone are clinically employed 
anxiolytics [8,11]. The antidepressant effects 
of 5‑HT

1A 
receptor agonists [12–14] have been 

explored with flesinoxan [15,16] and with fliban‑
serin, which also counters female sexual dys‑
function [17,18]. 5‑HT

1A 
receptor agonism is also 

a prominent feature of several anti-Parkinson’s 
disease drugs, including bromocriptine, lisuride 
and pardoprunox (SLV308) [19–21]. 5‑HT

1A 
recep‑

tor activation plays an important role in the action 
of atypical antipsychotics [22,23]. Indeed, clozap‑
ine, ziprasidone, aripiprazole and lurasidone act 
as 5‑HT

1A 
receptor partial agonists, as well as pos‑

sessing other pharmacological properties [24–26]. 
5‑HT

1A 
receptor agonists such as xaliproden 

and repinotan (BAYx3702) have been tested for 
potential neuroprotective activity [27–30] and the 
potent and high-efficacy agonist, befiradol, is 
active in a range of chronic pain models [9,31].

However, current drugs acting as 5‑HT
1A

 
agonists may be suboptimal in their profile of 
activity, because they indiscriminately activate 
5‑HT

1A
 receptors in those brain regions that are 

responsible for therapeutic actions and also in 
those regions that mediate other responses, which 
include side effects. For example, whereas activa‑
tion of postsynaptic 5‑HT

1A
 receptors is thought 

to mediate antidepressant properties, activation of 
raphe-located 5‑HT

1A
 autoreceptors is implicated 

in a delay of onset of antidepressant efficacy (see 
discussion later) [32–34]. Hypothalamic 5‑HT

1A
 

receptors are involved in thermoregulation and 
neuroendocrine control, whereas septum/hip‑
pocampal receptors control acetylcholine release 
and aspects of memory function [1,10,35], thus acti‑
vation of these receptor subpopulations can elicit 
hormonal and cognitive side effects. Therefore, it 
would be desirable to identify agonists that pref‑
erentially target those 5‑HT

1A
 receptors that are 

implicated in therapeutic properties whilst avoid‑
ing interactions at other 5‑HT

1A
 receptor sub‑

populations: such a ‘biased agonist’ could exhibit 
a wider therapeutic margin between beneficial 
effects and side effects (Figure 1). The present 
article summarizes evidence that 5‑HT

1A
 recep‑

tors in different brain regions exhibit distinct 
molecular signaling properties, thus providing 
a mechanistic basis for preferential targeting of 
receptor subpopulations using pharmacological 
agents, such as the novel agonist F15599.

Differential functions of  
pre- & post-synaptic 5‑HT1A receptors
5‑hydroxytryptamine

1A 
receptors elicit differ‑

ential, and sometimes opposing, responses in 
different brain regions. Receptor inactivation 
studies using N-ethoxycarbonyl-2-ethoxy-1,2-
dihydroquinoline demonstrated the existence of a 
5‑HT

1A 
receptor reserve in the raphe for inhibition 

Summary	 Serotonin or 5‑hydroxytryptamine (5‑HT)1A receptors are widely expressed 
in the brain and have extensive influence in the control of mood, cognition, movement 
and pain. In order to achieve optimal therapeutic benefit from targeting these receptors, 
‘biased agonists’ (also known as ‘functionally selective agonists’) are desirable in order to 
preferentially activate receptor subpopulations in brain regions that mediate therapeutic 
activity, whilst avoiding those that control other effects. For example, clinical studies indicate 
that antidepressant activity is favored when 5‑HT1A autoreceptor activation is minimized and 
postsynaptic 5‑HT1A receptor activation is reinforced. F15599 is a novel biased agonist that 
exhibits a distinctive signal transduction ‘fingerprint’ in vitro and preferential postsynaptic 
activation of cortical 5‑HT1A receptors in vivo. This profile confers on F15599 a superior activity 
in animal models of depression and cognition, with a wide therapeutic margin relative to 
side effects. The use of biased agonists at 5‑HT1A receptors constitutes an attractive strategy 
to manage CNS disorders arising from dysfunctional serotonergic neurotransmission.
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of 5‑HT synthesis [36]. By contrast, a receptor 
reserve was not observed in the hippocampus for 
inhibition of adenylyl cyclase activity or for con‑
trol of hypothermia [37,38]. The agonist radiotracer 
[3H]8‑OH-DPAT showed a fivefold higher affin‑
ity in the hippocampus than in raphe membranes 
[39], suggesting that the receptor–G‑protein cou‑
pling state of the receptor differs between the two 
brain regions. Furthermore, although 5‑HT

1A 

receptors are coupled to inhibition of adenylyl 

cyclase in the hippocampus, they are not coupled 
to this response in the raphe homogenates [40]. By 
contrast, 5‑HT

1A 
receptor-mediated inhibition of 

inositol phosphate synthesis by 8‑OH-DPAT and 
flesinoxan was observed in the raphe but not in 
the hippocampus [39]. An immuno-precipitation 
study found that, in raphe, 5‑HT

1A 
receptors pref‑

erentially couple to Gai3 subtypes whereas they 
couple preferentially to Gao in the hippocampus 
and to a combination of G‑proteins in the cortex 

Table 1. Examples of clinically tested drugs with 5‑hydroxytryptamine1A receptor properties.

Indication Compound Trade name or 
highest development

Company Mechanism of action Ref.

Mood disorders

Anxiety (GAD) Buspirone Buspar® Bristol-Myers Squibb 5‑HT1A partial agonist [8]

Anxiety (GAD) Tandospirone Sediel® Dainippon Sumitomo 5‑HT1A partial agonist [105]

Anxiety (GAD) Osemozotan Phase II MediciNova/Mitsubishi 5‑HT1A partial agonist [94]

Depression Vilazodone Viibryd® Forest/Merck KGa SRI, 5‑HT1A partial agonist [72]

Depression Lu-AA21004 Phase III Lundbeck/Takeda SRI, 5‑HT1A partial agonist [74]

Depression, FSD Flibanserin Phase III (d) Boehringer Ingelheim 5‑HT1A agonist, 5‑HT2A antagonist, 
D4 partial agonist

[18]

Depression F15599 Phase I (d) Pierre Fabre Selective 5‑HT1A agonist [99]

Depression 
(as adjunct therapy)

Pindolol Visken® Novartis 5‑HT1A partial agonist, adrenergic b-blocker [32]

Schizophrenia

Schizophrenia Clozapine Clozaril® Novartis Multireceptor, 5‑HT1A partial agonist [23]

Schizophrenia Ziprasidone Geodon® Pfizer Multireceptor, 5‑HT1A partial agonist [23]

Schizophrenia Aripiprazole Abilify® Otsuka/Bristol-Myers 
Squibb

Multireceptor, D2 and 5‑HT1A partial agonist [26]

Schizophrenia Lurasidone Latudar® Dainippon Sumitomo Multireceptor, 5‑HT1A partial agonist [25]

Schizophrenia Cariprazine Phase III Gedeon Richter/Forest D3/D2 and 5‑HT1A partial agonist, 
5‑HT2B antagonist

[130]

Schizophrenia Bifeprunox Phase III (d) Solvay D2 and 5‑HT1A partial agonist [131]

Pain

Migraine Naratriptan Naramig® GlaxoSmithKline 5‑HT1B agonist, 5‑HT1A agonist [132]

Neuropathic Befiradol Phase II Pierre Fabre Selective 5‑HT1A agonist [9]

Neurodegenerative disorders

Alzheimer’s disease Lecozotan Phase III Wyeth 5‑HT1A antagonist [133]

Parkinson’s disease Bromocriptine Parlodel® Novartis D2 and 5‑HT1A partial agonist [19]

Parkinson’s disease Lisuride Dopergin® Bayer D2 partial agonist, 5‑HT1A agonist, 
5‑HT2 antagonist

[19]

Parkinson’s disease Pardoprunox Phase III Solvay 5‑HT1A agonist, D2 partial agonist [21]

Ischemic stroke Piclozotan Phase III Daiichi Asubio 5‑HT1A partial agonist [134]

Ischemic stroke Repinotan Phase II (d) Bayer Selective 5‑HT1A agonist [27]

Peripheral 
neuropathy, ALS

Xaliproden Phase III (d) Sanofi-Aventis 5‑HT1A partial agonist [29]

5-HT: 5-hydroxytryptamine; ALS: Amyotrophic lateral sclerosis; d: Development discontinued; FSD: Female sexual dysfunction; GAD: Generalized anxiety disorder; SRI: Serotonin 
reuptake inhibitor.
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and hypothalamus [41]. 5‑HT
1A 

receptor agonists 
also increased ERK1/2 phosphorylation in the 
cortex, presumably by direct activation of post‑
synaptic 5‑HT

1A 
receptors. By contrast, 5‑HT

1A 

receptor agonists inhibited ERK1/2 phosphory‑
lation in the hippocampus, likely via an inhi‑
bition of 5‑HT release caused by activation of 
presynaptic 5‑HT

1A 
receptors [42–44]. 

At a neurochemical level, activation of pre‑
synaptic 5‑HT

1A 
receptors expressed on sero‑

tonergic neurons elicits inhibition of 5‑HT 
release in terminal regions such as the hip‑
pocampus and cortex. By contrast, activation 
of postsynaptic cortical 5‑HT

1A 
heterorecep‑

tors expressed on glutamatergic pyramidal 
cells and/or GABAergic interneurons elicited 
increased dopamine release [45–47]. In rodent 
behavioral tests, anxiolytic activity is mediated 
by activation of presynaptic 5‑HT

1A 
receptors 

[8,12], whereas antidepressant-like activity is 
mediated by activation of postsynaptic receptors 

[12]. Accordingly, mice that were genetically 
manipulated to increase raphe 5‑HT

1A 
receptor 

expression exhibited depressive-like behavior and 
were resistant to antidepressant treatment [48]. 
These observations are consistent with clinical 
observations in depressed patients treated with 
serotonin reuptake inhibitors (SRIs): desensiti‑
zation of presynaptic 5‑HT

1A
 receptors is neces‑

sary before antidepressant efficacy is achieved 
[32,34]. Indeed, the therapeutic onset of SRIs was 
accelerated when 5‑HT

1A
 autoreceptors were 

antagonized with pindolol. This 5‑HT
1A

 recep‑
tor partial agonist (and b-adrenergic antagonist) 
competes with 5‑HT at 5‑HT

1A
 autoreceptors 

and thus mimics the desensitization of this 
receptor subpopulation [32]. Other studies with 
pindolol provided support for the importance 
of postsynaptic 5‑HT

1A
 receptor activation in 

antidepressant action. Indeed, when feedback 
inhibition of presynaptic 5‑HT

1A
 receptors was 

blocked with pindolol, the anxiolytic, buspirone 

Figure 1. Concept of a biased agonist with preferential activity at postsynaptic cortical 5‑hydroxytryptamine1A receptors. Activation 
of postsynaptic 5‑HT1A receptors mediates therapeutic (e.g., antidepressant) properties, whereas activation of raphe autoreceptors 
is implicated in delay of therapeutic onset of antidepressants. Hypothalamic 5‑HT1A receptors are involved in thermoregulation and 
neuroendocrine control whereas septum/hippocampal receptors control ACh release and aspects of memory function. A biased agonist 
preferentially targeting cortical 5‑HT1A receptors could exhibit a wider margin between therapeutic effects and side effects. 
5-HT: 5‑hydroxytryptamine; ACh: Acetylcholine.
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(which is not effective as a monotherapy against 
depression) exerted clinical antidepressant influ‑
ence, presumably through activation of postsyn‑
aptic 5‑HT

1A
 receptors [49]. In cognition tests, 

8‑OH-DPAT facilitated rat passive avoidance at 
low doses, whereas higher doses impaired perfor‑
mance [50,51]. This is likely owing to differential 
effects at pre- and post-synaptic 5‑HT

1A 
recep‑

tors, respectively [10]. Indeed, microinjection of 
the 5‑HT

1A 
receptor weak partial agonist, S15535, 

into the hippocampus reversed the memory defi‑
cit elicited by systemic injection of 8‑OH-DPAT 
in a spatial discrimination task [35], indicating 
that activation of postsynaptic receptors in this 
brain region was detrimental to mnesic perfor‑
mance. Finally, activation of presynaptic 5‑HT

1A 

receptors may facilitate addiction-related behav‑
iors, whereas activation of postsynaptic 5‑HT

1A 


receptors

 
inhibits them [52].

It should be noted that the diverse effects of 
pre- and post-synaptic 5‑HT

1A 
receptor activa‑

tion are not caused by the presence of receptor 
subtypes. Indeed, only a single 5‑HT

1A 
receptor 

gene has been identified in humans and rats: it 
has no introns or splice variants [53,54] and thus 
the variety of responses described earlier are 
attributable to regional differences in G‑protein 
subtypes [41], regulators of G‑protein signaling 
[55] or transcriptional regulation. Indeed, the 
expression of 5‑HT

1A 
receptors is differentially 

regulated by a single nucleotide polymorphism 
in the promoter region of the 5‑HT

1A 
recep‑

tor gene (rs6295 ; C[-1019]G substitution) 
[56,57]. This single nucleotide polymorphism 
impairs repression of the 5‑HT

1A 
promoter by 

the NUDR/DEAF‑1 transcription factors in 
raphe cells, consistent with overexpression of 
presynaptic 5‑HT

1A 
receptors [17,58]. Thus, the 

rs6295 polymorphism is associated with higher 
levels of remission failure and suicidal behavior 
in depressed patients, consistent with impaired 
antidepressant efficacy owing to excessive feed‑
back inhibition by presynaptic 5‑HT

1A 
receptors. 

Furthermore, schizophrenia patients expressing 
the rs6295 polymorphism exhibit deficient cog‑
nitive performance [59] and impaired negative 
symptoms and cognitive response to antipsy‑
chotics [60–63]. These observations are likely 
related to the fact that the rs6295 polymorphism 
also causes hypofunction of 5‑HT

1A 
receptors in 

the cortex [56,64,65], thus resulting in an overall 
imbalance of pre- versus postsynaptic receptor 
function. Some other 5‑HT

1A
 receptor single 

nucleotide polymorphisms are also associated 

with depressive traits and antidepressant treat‑
ment response [66,67], reinforcing the assertion 
that an imbalance of 5‑HT

1A
 receptor function 

is deeply implicated in mood disorders. 
Taken together, the aforementioned observa‑

tions indicate that indiscriminate activation of 
all 5‑HT

1A
 receptor subpopulations is unlikely to 

provide optimal therapeutic benefit. Accordingly, 
efforts have been made to preferentially influence 
5‑HT

1A
 receptor subpopulations. For example, 

SB‑649915-B is a drug that combines SRI and 
5‑HT

1A
 antagonist properties [68,69], aiming to 

avoid feedback inhibition of 5‑HT release by 
blocking the activation of 5‑HT

1A
 autorecep‑

tors [32,70]. However, whilst antidepressant effi‑
cacy may be enhanced by 5‑HT

1A
 autoreceptor 

antagonism, it may also be hindered by antago‑
nism of postsynaptic 5‑HT

1A
 receptors [12,71]. 

Vilazodone, Lu-AA21004 and VN2222 exem‑
plify another approach: they act as SRIs whilst 
retaining partial agonist activity at 5‑HT

1A
 recep‑

tors [72–74]. Indeed, pindolol is a partial agonist 
at 5‑HT

1A
 receptors, as discussed above [32,75]. 

However, a partial agonist strategy is not without 
uncertainty: is the agonism sufficiently modest 
to ensure antagonism of 5‑HT

1A
 autoreceptors? 

Is the agonism sufficiently prominent to avoid 
blocking postsynaptic 5‑HT

1A
 receptors? Such 

considerations suggest that it would be desirable 
to select compounds that preferentially interact 
with 5‑HT

1A
 receptor subpopulations mediating 

therapeutic properties (e.g., cortical postsynaptic 
sites), whilst minimizing interactions with other 
5‑HT

1A
 receptor subpopulations.

Biased agonism: differential activation of 
5‑HT1A receptor signaling 
Much attention has recently been given to the 
idea of ‘biased agonism’ (also known as ‘func‑
tional selectivity’ or ‘agonist-directed signaling’) 
[76–79]. According to this concept, agonists may 
preferentially direct receptor signaling to one 
G‑protein or second messenger response whilst 
not affecting, or even blocking, another response 
(Figure 2). If the different signaling responses 
mediate distinct functional effects (e.g., thera‑
peutic vs side effects), then biased agonism 
offers a strategy to identify more effective and 
better-tolerated drugs. Examples of serotonergic 
‘biased agonism’ have been reported at 5‑HT

2
 

receptors in vitro and in vivo and may underlie 
propsychotic effects of some CNS agents [80–82]. 

In the case of 5‑HT
1A 

receptors, several 
pharmacological studies show that agonists 
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can differentially activate signaling responses 
in vitro. In electrophysiological experiments on 
Xenopus oocytes transiently expressing 5‑HT

1A 

receptors, the agonists, 5‑HT, L694247 and 
F13714, stimulated G‑protein-activated inwardly 
rectifying K+ currents with similar efficacy [83]. 
By contrast, L694247 was more efficacious 
than 5‑HT in the stimulation of a G‑protein-
independent smooth inward current, whereas 
F13714 acted as an antagonist for this response, 
as did the selective 5‑HT

1A 
receptor antagonist 

WAY100635 [83]. 
A study examining G‑protein subtype activa‑

tion in a cloned cell line [84], found that different 
agonists displayed a varying balance of activa‑
tion of Gai2 and Gai3. Rauwolscine displayed 
similar EC

50
 values for activation of the two 

G‑protein subtypes, but ipsapirone showed a 
nearly fourfold lower EC

50
 for Gai3 activation. 

5‑HT and 8‑OH-DPAT had intermediate EC
50

 
ratios [84]. These data indicate that 5‑HT

1A 
recep‑

tor agonists can be distinguished by their relative 
capacity to activate different G‑protein subtypes.

Another study found that the G‑protein acti‑
vation elicited by 5‑HT via 5‑HT

1A 
receptors 

in a Chinese hamster ovary cell line was partly 
blocked by preincubation with anti-Gai3 anti‑
bodies, indicating that other G‑protein subtypes 
also couple to 5‑HT

1A 
receptors in this cell line 

[85]. However, in the case of the partial agonist, 
pindolol, preincubation with anti-Gai3 antibod‑
ies almost completely suppressed G‑protein acti‑
vation. This suggested that pindolol preferentially 

elicited 5‑HT
1A 

receptor coupling to Gai3 and 
not to other G‑protein subtypes, a mechanism 
that may underlie pindolol’s capacity to preferen‑
tially interact with 5‑HT

1A 
receptors in the raphe, 

as observed in PET studies [86,87]. Drug differ‑
ences were also seen in rat raphe transduction: 
buspirone elicited 5‑HT

1A 
receptor coupling to 

Gai2, Gai3 and Gao and inhibition of adeny‑
lyl cyclase [88]. By contrast, +8‑OH‑DPAT only 
elicited coupling to Gai3 and did not elicit the 
other responses. 

Among the drugs that have been clinically 
tested, f libanserin reportedly activates post
synaptic 5‑HT

1A 
receptors in the human cortex 

and hippocampus more than presynaptic sites in 
the raphe [18,89,90], although interpretation of these 
data is complicated by variations in the route of 
administration and interactions with 5‑HT

2A
 and 

D
4
 receptors [90,91]. The antipsychotic aripipra‑

zole, which reportedly shows biased agonism at 
D

2
 receptors [92], stimulated postsynaptic 5‑HT

1A
 

receptors controlling frontal cortex dopamine 
release at doses tenfold lower than those that 
inhibit 5‑HT release by activation of presynaptic 
5‑HT

1A
 receptors, suggesting a postsynaptic pref‑

erence [93]. By contrast, 8‑OH-DPAT activated 
presynaptic 5‑HT

1A
 receptors at lower doses than 

those that activate postsynaptic 5‑HT
1A

 receptors 
in the frontal cortex [94]. 

Whilst the aforementioned evidence is some‑
what fragmentary, it suggests that some exist‑
ing 5‑HT

1A 
receptor ligands may act as biased 

agonists with disparate influence on receptor 
signaling in different brain regions. Hence, the 
identification of novel ligands that preferentially 
target brain regions of interest appears pharma‑
cologically possible and may be therapeutically 
advantageous.

Distinct pharmacological targeting of  
pre- & post-synaptic 5‑HT1A receptors
F15599 is a potent, selective and high efficacy 
agonist of 5‑HT

1A 
receptors. Chemically related 

compounds include befiradol (F13640) and 
F13714 [95–97], but not 8‑OH-DPAT or buspi‑
rone (Figure 3). Detailed comparison of F15599 
and F13714 shows that they differ markedly 
in their in vitro signaling profiles and in their 
in vivo properties at subpopulations of 5‑HT

1A 

receptors. Therefore, although F15599, F13714, 
8‑OH-DPAT and 5‑HT all behaved as effica‑
cious agonists in cellular tests of G‑protein 
activation, adenylyl cyclase inhibition, ERK1/2 
phosphorylation and receptor internalization, 

G1 G2

E1 E2

R

Ago

G1 G2

E2E1

Ago1

R

G1 G2

E2E1

Ago2

R

Figure 2. Concept of biased agonism (also known as ‘functional selectivity’). 
The concept of ‘biased agonism’ (B & C) postulates that different agonists (Ago1 
or Ago2) acting at the same receptor may be capable of preferentially activating 
different signal transduction responses, such as G‑protein subtypes and coupled 
effectors (G1/E1 or G2/E2) [76,77], whereas the concept of ‘intrinsic activity’ (A)
postulates that agonists will activate all signaling pathways available to the receptor. 
Ago: Agonist; E: Effector; G: G-protein; R: Receptor. 
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the order of potency for stimulation of these 
responses was specific to each agonist (Table 2). 
Thus, F15599 showed marked potency for 
ERK1/2 phosphorylation (EC

50
 ~15  nM) 

but lower potency for other responses (EC
50

 
100–350  nM), whereas 5‑HT preferentially 
elicited adenylyl cyclase inhibition [98]. Each 
agonist exhibited its own ‘signaling fingerprint’, 
possibly because of agonist-directed coupling 
of 5‑HT

1A 
receptors to different G‑protein 

subtypes. Indeed, 5‑HT activated both Gai 
and Gao over a similar concentration range, 
whereas F15599 activated Gai more potently 
and more efficaciously than Gao. F13714 and 
8‑OH-DPAT exhibited intermediate profiles 
[98]. Given that 5‑HT

1A 
receptors couple to dif‑

ferent G‑protein subtypes depending on the 
brain area [41], this suggests that biased agonists 
can, de facto, preferentially target certain brain 
regions and functional responses. 

However, caution is desirable when extrapo‑
lating from in vitro effects to in vivo functional 
responses because cross-talk may render recep‑
tor-level biased agonism redundant in more inte‑
grated systems [34,78]. In the case of F15599, a 
series of studies [98–102] have demonstrated that 
its distinctive ‘signaling fingerprint’ translates to 
a distinctive preferential activation of postsyn‑
aptic (mainly cortical) 5‑HT

1A 
receptors, with 

less influence on presynaptic 5‑HT
1A 

receptors. 
By contrast, F13714 exhibits an opposite pref‑
erence, with more pronounced activation of 
5‑HT

1A 
autoreceptors and less potent activity at 

cortical receptors.
Firstly, in rat electrophysiological tests, 

F15599 stimulated frontal cortex pyramidal cell 
electrical activity at low doses (minimal effective 
dose 0.2 µg/kg intravenously), whereas a much 
higher dose was necessary to inhibit raphe neu‑
ron firing (minimal effective dose 8.2  µg/kg 
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Figure 3. 5‑hydroxytryptamine1A receptor agonists. F15599 and its chemical congeners, befiradol and F13714, are highly efficacious 
and selective 5‑hydroxytryptamine1A receptor agonists [95,97].  They are chemically distinct from serotonin, buspirone and 8‑OH-DPAT.
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intravenously) [102]. Both of these effects were 
antagonized by WAY100635. The electro‑
physiological profile of F15599 is not shared by 
other 5‑HT

1A 
agonists, such as 8‑OH-DPAT, 

befiradol or repinotan [Lladó-Pelfort L, Assié M-B, 

Newman-Tancredi A, Artigas F, Celada P, Unpublished 

Data] [73,103,104].
Secondly, in microdialysis studies, F15599 

stimulated dopamine release in rat medial pre‑
frontal cortex at low doses (ED

50
 0.03 mg/kg 

intraperitoneally). This effect was associated 
with beneficial properties on mood and cognitive 
parameters and was reversed by WAY100635 
[102,103,105]. By contrast, F15599 inhibited hip‑
pocampal 5‑HT release at doses that were about 
an order of magnitude higher (ED

50
 0.24 mg/kg 

intraperitoneally) [102], indicating that F15599 
only modestly activates 5‑HT

1A
 autoreceptors. 

This profile of activity is not shared by other 
5‑HT

1A
 agonists, even closely related analogs, 

such as F13714 or befiradol [Lladó-Pelfort L, 

Assié M-B, Newman-Tancredi A, Artigas F, Celada P, 

Unpublished Data] [45,106], suggesting that the 
chemical structure of F15599 underlies its dis‑
tinctive profile. In other experiments, where 
5‑HT

1A
 receptor agonists were chronically 

administered in rats by osmotic mini-pumps, a 
low dose of F13714 (2.5 mg/kg/day for 3 days) 
was sufficient to rapidly desensitize presynaptic 
5‑HT

1A 
receptors [107,108]. Indeed, administration 

of buspirone failed to elicit a decrease in hippo‑
campal 5‑HT release, indicating that 5‑HT

1A
 

autoreceptors were no longer responsive. By 
contrast, F15599 did not desensitize presynap‑
tic 5‑HT

1A 
receptors, except at very high doses 

(20 mg/kg/day for 14 days), indicating that it 
has little effect on somatodendritic 5‑HT

1A
 sites.

Thirdly, a preferential postsynaptic action 
of F15599 is supported by rat ex vivo studies of 
expression of the immediate early gene, c-Fos, 
in different brain regions, as determined by 
quantitative PCR. c-Fos expression provides a 
marker of neuronal activation state and, in the 

case of F15599, was markedly stimulated in the 
frontal cortex, but very little or not at all in the 
median or dorsal raphe [98]. By contrast, F13714 
showed an opposite profile, strongly stimulating 
c‑Fos expression in dorsal raphe, to an extent that 
exceeded that in the frontal cortex [109].

Fourthly, ex vivo studies of ERK1/2 phosphor‑
ylation in different brain regions, determined 
by quantitative ELISA assay, demonstrated that 
F15599 increased ERK1/2 phosphorylation in 
the rat frontal cortex (a response controlled by 
postsynaptic 5‑HT

1A 
receptors) and inhibited it 

in the hippocampus (a response controlled by 
presynaptic receptors) at similar doses [98]. By 
contrast, F13714 and befiradol were markedly 
more potent for stimulation of ERK1/2 phos‑
phorylation in the hippocampus, indicating a 
preferential presynaptic action [43]. These data 
suggest that pronounced ERK1/2 phosphory‑
lation may underlie the preferential cortical 
activity of F15599, an interpretation that is 
consistent with the compound’s potent activa‑
tion of ERK1/2 phosphorylation in cellular tests 
in vitro, as discussed earlier [98].

Fifthly, in a rat drug discrimination study, 
F15599 generalized to an 8‑OH-DPAT cue only 
when high doses were administered, whereas 
F13714 did so at very low doses, suggesting that 
the cue is related to presynaptic 5‑HT

1A
 receptor 

activation [110]. 

Effects of preferential postsynaptic  
5‑HT1A receptor activation in models of 
mood & cognition
The biased agonism of F15599 at postsynaptic 
cortical 5‑HT

1A 
receptors translates to a superior 

behavioral profile in models of mood and cog‑
nition. Thus, F15599 potently and completely 
reversed immobility in the rat forced swim test 
(FST), a classical model of antidepressant-like 
activity, and inhibited shock-induced ultrasonic 
vocalization in rats, a measure of antistress/anx‑
iolytic activity [99,111]. Notably, the potency of 

Table 2. Rank order of potency for activation of cloned human 5‑hydroxytryptamine1A receptor 
signaling in cell lines. 

Agonist First response Second response Third response Fourth response

F15599 pERK >> G‑protein > Internalization > cAMP

F13714 pERK > Internalization = G‑protein ≥ cAMP

(+)8‑OH-DPAT pERK >> cAMP > Internalization ≥ G‑protein

Serotonin cAMP > G‑protein > pERK > Internalization

= Similar potency; > Greater potency; >> Much greater potency. 
Data taken from [98].
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F15599 in both these tests is as great as that of its 
congener, F13714, despite the fact that the latter 
has an over 30-fold higher affinity in in vitro bind‑
ing experiments (0.01 nM for F13714 vs 3.4 nM 

for F15599) (Table  3) [98]. The marked in  vivo 
potency of F15599 suggests that preferential 
activation of cortical 5‑HT

1A 
receptors produces 

accentuated effects on mood parameters. 

Table 3. Comparative pharmacological profile of the postsynaptic preferential 5‑hydroxytryptamine1A agonist, F15599, and the 
presynaptic preferential agonist, F13714.

F15599 F13714 Ref.

Receptor binding and signaling

In vitro 5‑HT1A receptor affinity (Ki) 3.4 nM 0.01 nM [98]

In vitro signaling potency – see Table 2 (EC50) 10–300 nM ~1 nM [98]

In vitro Gai activation (EC50; Emax) 110 nM; 122% 0.7 nM; 110% [98]

In vitro Gao activation (EC50; Emax) 850 nM; 103% 0.8 nM; 83% [98]

In vivo 5‑HT1A binding, mouse cortex (ID50, ip.) 2.5 1.0 [98]

Ex vivo c-Fos frontal cortex (MED, ip.) 0.16 0.16 [98,109]

Ex vivo c-Fos dorsal raphe (MED, ip.) No stimulation 0.16 [98,109]

Ex vivo ERK1/2 frontal cortex stimulation (MED, ip.) 0.63 0.16 [98,109]

Ex vivo ERK1/2 hippocampus inhibition (MED, ip.) 0.63 0.04 [98,109]

Electrophysiology and neurochemistry

Electrophysiology: cortex pyramidal neurons  
(MED, intravenous)

0.2 µg/kg n.t. [102]

Electrophysiology: DRN 5‑HT neurons (MED, intravenous) 8.2 µg/kg n.t. [102]

Microdialysis: frontal cortex dopamine (ED50, ip.) 0.03 0.16 [102]

Microdialysis: hippocampal 5‑HT (ED50, ip.) 0.24 0.04 [102]

Microdialysis: 5‑HT1A autoreceptor desensitization 20 mg/kg/day, 
14 days

2.5 mg/kg/day, 
3 days

[107,108]

Antidepressant and pro-cog. properties

Forced swim test: systemic (ED50, p.o.) 0.12 0.06 [99]

Ultrasonic vocalization (ED50, ip.) 0.06 0.02 [99]

Hole-board: working memory vs PCP (dose ip.) Pro-cog., 0.16 Inactive, 0.04 [100]

Reversal-learning flexibility vs PCP (dose ip.) Pro-cog., 0.16 Deficit, 0.04 [100]

Novel object recognition vs PCP (dose ip.) Pro-cog., 0.16 n.t. [Horiguchi M, Meltzer HY, Unpublished Data]

Side effects

Forepaw treading (ED50, p.o.) 3.7 0.70 [99]

Flat body posture (ED50, p.o.) 7.2 0.84 [99]

Corticosterone release (ED50, p.o.) 0.45 0.05 [99]

Prepulse inhibition deficit (MED, ip.) 0.63 0.04 [100,135]

DNMTP working memory deficit >0.32 0.04 [100]

5CSRTT attentional deficit (MED, ip.) 0.63 0.04 [100]

Unless stated, all ex vivo and in vivo tests were carried out in rats and doses are expressed as mg/kg.
5CSRTT: 5-choice serial reaction time test; 5-HT: 5‑hydroxytryptamine; DNMTP: Delayed non-matching to position; DRN: Dorsal raphe nucleus; ip.:  Intraperitoneally; MED: Minimal 
effective dose; n.t.: Not tested; PCP: Phencyclidine; p.o.: Per orem; Pro-cog.: Procognitive.
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Several clinical studies have demonstrated that 
adjunctive treatment with 5‑HT

1A 
partial agonists 

improves the cognitive state of schizophrenics [105]. 
Indeed, when tandospirone was administered to 
patients treated with typical antipsychotics, such as 
haloperidol, they performed better in tests of execu‑
tive function, verbal learning and memory [112,113]. 
By contrast, when buspirone was co-adminis‑
tered with atypical antipsychotics, only modest 
improvements in attention were observed [114]. 
Differences between these studies may arise from 
the higher receptor selectivity and agonist efficacy 
of tandospirone and/or from the co-administra‑
tion of typical versus atypical antipsychotics [105]. 
Nevertheless, taken together, these studies provide 
support for the contention that 5‑HT

1A
 agonism 

is a promising strategy in improving the cognitive 
state of schizophrenia. In this context, F15599 was 
tested in rodent models of cognitive impairment 
induced by the noncompetitive NMDA recep‑
tor antagonist, phencyclidine (PCP), because 
NMDA receptor hypo-function, particularly in 
cortical regions, is considered to underlie aspects of 
negative symptomatology and cognitive deficits in 
schizophrenia [115–117]. F15599 exhibited favorable 
effects upon chronic treatment in a rat reversal-
learning test [100]. In this test, animals are required 
to associate a stimulus with one of two levers of 
an operant box in order to receive food reinforce‑
ment. The reacquisition of the task following rule 
reversal provides a measure of cognitive flexibility 
and is disrupted by PCP administration. F15599 
significantly increased the PCP-treated animals’ 
rates of correct responding, whereas F13714 failed 
to reverse the PCP-induced deficit and, in fact, 
tended to accentuate it [100]. This observation is 
likely related to F13714’s preferential presynaptic 
5‑HT

1A 
agonism, potently inhibiting 5‑HT release 

[107]. Indeed, reversal learning is known to require 
functional serotonergic transmission in the frontal 
cortex [118,119] as well as functional D

2
 receptors 

[120], suggesting that F15599 is able to re-establish 
normal functioning in this brain region through 
its preferential activity at cortical 5‑HT

1A 
recep‑

tors at doses that elicit dopamine release without 
suppressing serotonergic neurotransmission. In 
another test of PCP-induced cognitive deficits, 
F15599 improved performance of rats in a hole-
board test. The hole-board consisted of an open 
arena whose floor was fitted with 16 holes, four of 
them baited with food pellets. F15599 increased the 
proportion of visits to baited holes by PCP-treated 
animals, thus significantly improving working and 
reference memory scores [100], possibly by opposing 

the release of glutamate elicited in the frontal cortex 
by NMDA receptor blockade [121,122]. By contrast, 
F13714 disrupted performance when tested by 
itself and tended to accentuate PCP-induced defi‑
cits [123]. Finally, in an extensive study of the role 
of 5‑HT

1A
 agonism on PCP-disrupted novel object 

recognition in rats, F15599 markedly improved 
the discrimination index, as did another effica‑
cious agonist, tandospirone, whereas the partial 
agonist, buspirone, did not [Horiguchi M, Meltzer HY, 

Unpublished Data]. These observations parallel clini‑
cal data in which tandospirone, but not buspirone, 
attenuated cognitive deficits in schizophrenia (see 
earlier) [105]. 

In animal tests related to side effects, F15599 
exhibited a superior profile compared with F13714. 
Thus in rats, F15599 exhibited little propensity to 
elicit forepaw treading or flat body posture, which 
are elements of 5‑HT behavioral syndrome com‑
monly observed with 5‑HT

1A 
receptor agonists 

[124,125]. F15599 only elicited these responses at 
doses that were 30–60‑fold higher than those that 
suppress immobility in the FST [99]. Furthermore, 
at antidepressant doses, F15599 did not impair 
performance in a two-lever delayed non-matching 
to position (DNMTP) test of working memory in 
which rats are required to press on the ‘opposite’ 
pedal to that which was previously presented; it 
did not interfere with performance in the 5-choice 
serial reaction time test (5CSRTT) in which rats 
were required to maintain a high level of sustained 
attention and respond to a stimulus light in order 
to gain a food reward; and it did not disrupt pre‑
pulse inhibition of startle response, a measure of 
sensory-motor gating [123]. By contrast, F13714 
potently elicited these side effects at doses similar 
to those active in the FST. 

The superior profile of F15599 could be related 
to differential occupancy of subpopulations of 
5‑HT

1A 
receptors. Indeed, using [3H]WAY100635 

as a radiotracer, F15599 occupied mouse cortical 
and hippocampal 5‑HT

1A 
receptors in vivo nearly 

as potently as F13714 [99], despite the fact that 
the latter has greater affinity in vitro (Table 3) [98]. 
Interestingly, the dose–response curve of F15599 
was noticeably shallower than that of F13714, sug‑
gesting that F15599 may distinguish different pop‑
ulations of receptors, possibly reflecting different 
coupling states. Further, in a PET imaging study, 
[18F]F15599 preferentially labeled rat cortical, 
rather than hippocampal, 5‑HT

1A 
receptors, even 

though the latter brain region expresses higher 
levels of receptors [101]. In cats, [18F]15599 prefer‑
entially labeled 5‑HT

1A 
receptors in the cingulate 
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cortex, whereas labeling was not observed in the 
hippocampus. This unique regional distribution 
of labeling differs sharply from that observed with 
antagonist radioligands such as [18F]MPPF [126] 
or [O-methyl-11C]WAY100635 [127], which label 
all 5‑HT

1A 
receptors in different brain regions. 

These observations support the notion that [18F]
F15599 preferentially interacts with specific sub‑
populations of 5‑HT

1A 
receptors in the brain, 

possibly depending on their coupling to specific 
G‑protein subtypes. Two additional comments 
should be made: firstly, [18F]F15599 also labeled 
mid-brain raphe 5‑HT

1A 
receptors in cats [101]. 

However, this interaction seems to be independent 
of agonist activity because, as discussed earlier, 
F15599 only inhibited raphe neuron electrical 
activity and hippocampal 5‑HT release at high 
doses [102]. Secondly, F15599 may distinguish 
different populations of 5‑HT

1A 
receptors within 

cortical tissue – an assertion based on rat micro‑
injection studies in which agonists were locally 
administered in the medial prefrontal cortex: 
F13714 and 8‑OH-DPAT showed conventional 
monophasic dose–response relationships for 
inhibition of immobility in the FST (dose ranges 
from 0.016 to 8 µg), effects which were abolished 
by WAY100635. By contrast, microinjection of 
low doses of F15599 (0.016–1 µg) resulted in 
a V-shaped dose–response curve of immobil‑
ity in the FST (~50% inhibition of immobility 
at 0.25 µg), an effect that was antagonized by 
WAY100635. Higher doses of F15599 (1–32 µg) 
resulted in a progressive decrease in immobility in 
the FST (>70% at 32 µg), which was also reversed 
by WAY100635 [128]. F15599 may, possibly, dis‑
tinguish cortical 5‑HT

1A
 receptors expressed 

on pyramidal cells from those expressed on 
GABAergic interneurons [47,129].

Conclusion & future perspective
Serotonin 5‑HT

1A
 receptors constitute attrac‑

tive targets for the management of a variety of 
neurological, psychiatric and pain disorders. 
However, they are expressed in a variety of brain 

regions where they mediate diverse and some‑
times opposing functions. Therefore, consider‑
able benefits could be gained by designing ago‑
nists that preferentially activate 5‑HT

1A 
receptor 

subpopulations in the specific brain regions that 
are relevant to the pathology of interest. Such 
preferential targeting may be achievable thanks 
to the distinct signal transduction mechanisms 
that are associated with 5‑HT

1A
 receptors in dif‑

ferent brain regions. Some agonists have, in fact, 
been reported to exhibit preferential activation 
for specific signaling responses. In particular, the 
pharmacological profile of F15599 demonstrates 
that subpopulations of cortical 5‑HT

1A 
receptors 

may be pharmacologically targeted by biased (or 
‘functionally selective’) agonists that possess spe‑
cific intracellular ‘signaling fingerprints’, possibly 
via preferential Gai G‑protein subtype activation 
and/or potent ERK1/2 activation. Preferential 
targeting of cortical 5‑HT

1A 
receptors is a particu‑

larly attractive strategy because it should acceler‑
ate the onset of therapeutic efficacy in depression 
and attenuate impairments of working memory 
and cognitive flexibility observed in schizophre‑
nia. In addition, preferential targeting of cortical 
5‑HT

1A 
receptors may increase the therapeutic 

margin with respect to side effects that arise from 
the activation of other 5‑HT

1A 
receptor subpopu‑

lations. Taken together, these findings provide 
substantial evidence that the activity of 5‑HT

1A 

receptor agonists at distinct pre- and post-synap‑
tic subpopulations of 5‑HT

1A 
receptors should be 

considered when selecting drugs that influence 
serotonergic neurotransmission.
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