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Abstract

In this study, we proposed a kinect-based medical augmented reality (AR) system for cranio-
facial applications.By using a Kinect sensor to acquire the surface structure of the patient, 
image-to-patient registration is accomplished by an Enhanced Iterative Closest Point (EICP) 
algorithm automatically. Moreover, a pattern-free AR scheme is designed by integrating the 
Kanade-Lucas-Tomasi (KLT) feature tracking and RANdom Sample Consensus (RANSAC) cor-
rection, which is better than traditional pattern-based and sensor-based AR environment. The 
demonstrated system was evaluated with a plastic dummy head and a human subject. Result 
shows that the image-to-patient registration error is around 3~4 mm, and the pattern-free AR 
scheme can provide smooth and accurate AR camera localization as the commercial tracking 
device does.
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Introduction

Recently, image-guided surgery plays an 
important role in different fields of surgery 
significantly. Surgeons make surgical planning 
through various types of preoperative medical 
imaging, such as computed tomography (CT) or 
magnetic resonance imaging (MRI), and surgeries 
are performed according to these preoperative 
medical images. In general, Image-Guided 
Navigation Systems (IGNS) help the surgeons to 
find the spatial relationship between preoperative 
medical images and physical space. Moreover, 
they can also provide visualized information for 
the surgeons to recognize the position of nidus 
or to verify the surgical path during the surgery 

[1]. Recently, applying augmented reality (AR) 
technology to the IGNS is a trend for image-
guided surgery. The medical AR system merges 
medical images or anatomical graphic models 
into the scene of real world [2-4]. Therefore, the 
ways to accurately align pre-operative medical 
images with physical anatomy and to effectively 
provide anatomical information to the surgeons 
are two important keys for amodern medical AR 
IGNS.

In past, in order to perform intraoperative 
image-to-patient registration, conventionally, a 
stereotactic frame is fixed to the skull of a patient 
before scanning the medical images [5,6]. With 
known landmarks of the stereotactic frame, the 
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placing a black-white rectangle pattern in the 
scene. This pattern forms a reference coordinate 
system and can easily be detected in the camera 
field of view (FOV) [20,21] by using computer 
vision technique. Once the pattern is detected in 
AR camera frame, the extrinsic parameters can 
be determined through perspective projection 
camera model. Alternatively, some studies attach 
couple of retro-reflective markers, e.g. infrared 
reflective markers, on the AR camera and track 
these markers by using an optical tracking sensor 
[22,23].Therefore, position and orientation 
of the camera can be estimated by using the 
position of these markers. 

In this study, we proposed a Kinect-based 
AR system for craniofacial applications. In 
order to automatically perform image-to-
patient registration in the manner of totally 
non-contacting, Microsoft Kinect is adopted 
herein. The depth data obtained by Kinect 
is utilized to reconstruct a point cloud of the 
patient’s craniofacial surface in physical space. 
An enhanced ICP (EICP) algorithm is then 
applied to align this surface data to another 
surface data, which is extracted from CT images 
of the same patient. The EICP algorithm has 
two characteristics: First, a random perturbation 
technique is applied to provide the algorithm 
the ability to escape from the local minimum. 
Second, a weighting strategy is added to the 
cost function of ICP in order to decrease the 
influence of outlier points.

Furthermore, a Head-Mounted Display (HMD) 
device mounted with a camera is utilized to 
achieve pattern-free AR visualization. For the 
AR camera localization, Scale-Invariant Feature 
Transform (SIFT) [24] image matching is first 
applied to find the correspondence between 
the color images of Kinect and the AR camera. 
When the AR camera moves, these SIFT 
feature points are then tracked by using KLT 
tracking algorithm [25] frame by frame, and 
thus the extrinsic parameters can keep updating. 
Moreover, RANdom Sample CONsensus 
(RANSAC) [26] is applied to make the KLT 
tracking result smoother in each frame of the AR 
visualization. Moreover, considering the target 
for AR rendering might be out of the FOV of the 
AR camera, a re-initialization step is necessary 
and we accomplish it by using Speeded-Up 
Robust Features (SURF) [27] feature matching 
for target face detection.

In order to evaluate the performance of the 
proposed system, we have tested the system 

stereotactic frame acts as a bridge to connect 
the coordinates of medical imaging and the 
coordinate system of physical space. Although 
the stereotactic frame is quite reliable for spatial 
localization, there are several drawbacks while 
applying in the surgery. First of all, mounting 
a stereotactic frame to the patient’s head is 
invasive and possibly extends the rehabilitation 
period. Second, the stereotactic frame is needed 
to fix on the skull not only during medical 
image acquisition but also in the whole surgical 
operation. A method to avoid the shortcomings 
is using skin-attached fiducial markers [7,8]. 
Comparing to the stereotactic frame, the skin 
markers are friendlier and less invasive to patients, 
but it is less accurate due to the elasticity of the 
skin.

Later, using natural surface for the image-to-
patient registration seems becoming a more 
proper solution [9-11]. The surface data in 3-D 
point-cloud form is usually acquired by utilizing 
non-invasive devices such as laser range scanner 
(LRS) or time-of-flight camera [12]. By applying 
a surface registration algorithm, such as the well-
known Iterative Closet Point (ICP) [13-16], 
the surface data can be used to register with the 
same surface extracted from the patient’s medical 
images. However, the ICP algorithm has two 
drawbacks: the registration result is sensitive to 
the initial position of these two data sets; in other 
words, the algorithm might get trapped into a 
local minimum. Moreover, the outliers, i.e. the 
data with noise, may also affect the registration 
accuracy [17].

In additions, image-guided medical systems 
display the medical information such as image 
slices or anatomical structures in a virtual 
reality (VR) coordinate system on a regular 
screen. Therefore, surgeons need good spatial 
concept to interpret this virtual-to-real world 
transformation. In contrast, AR is an alternative 
but more attractive way for visualization. An 
AR system in general uses a movable camera to 
capture images from physical space, and draws 
graphical objects at their correct position on 
the images. As a result, the way to estimate the 
spatial relationship between the camera and the 
physical space is the most important issue in an 
AR system [18,19].The spatial relationship is 
also known as the extrinsic parameters of AR 
camera. A precise estimation of the extrinsic 
parameters ensures that the medical information 
can be accurately rendered on the scene captured 
from the physical space. A conventional 
approach to estimate extrinsic parameters is 
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with two subjects: a plastic dummy head and a 
human subject. The extrinsic parameters of the 
AR camera estimated by the proposed system are 
evaluated with the parameters estimated by using 
a commercial optical tracking device. 

Materials and Methods

�� System Overview

The system has two main devices. The first 
one is Microsoft Kinect sensor. The imaging 
components of the Kinect comprise a color 
camera, an infrared transmitter, and an infrared 
CMOS camera. The color camera acquires 
images with 640x480 pixels in 30 frames per 
second (fps). The infrared transmitter projects 
a pattern of IR dots into the physical space, 
and the depth information of this scene is then 
reconstructed by the infrared camera. According 
to Khoshelham, et al. [28], the error of Kinect 
depth estimation is only a few millimeters 
when the object is located less than one-meter 
distance to the cameras. Another device utilized 
for AR visualization is a head mounted display 
(HMD) device. This HMD device is mounted 
with a CCD camera with resolution 640x480 
on its front to capture the scene of real world. 
By fusing the anatomical information of the 
preoperative images on the images captured by 
the attached camera, the AR visualization can 
thus be displayed on the HMD screens. The 
HMD and camera module used in the study 
is the iWear-VR920 made by VUZIX [29].  
Figure 1 illustrates a flowchart of the proposed 
system. In general, the proposed system is 
divided into two stages: registration stage and 
real-time AR stage.

In the registration stage, marker-free image-
to-patient registration is performed. Facial 
data of the patient is reconstructed from the 
preoperative CT images, and we utilized an 
EICP to align the preoperative CT model with 
the facial data of the patient in physical space, 
which is extracted by the Kinect depth camera. 
After the registration process, the transformation 
between CT coordinate system and the real world 
coordinate system will be applied to the pre-
produced Virtual-Reality Modeling Language 
(VRML) model of CT for AR visualization of 
this model.

In the real-time AR display stage, firstly an 
initialization step is executed. The initialization 
step loads the VRML model which is generated 
by previous registration step, and performs SIFT 

feature matching to find the correspondence 
between HMD camera and Kinect color image. 
Next, in real-time AR stage, for each frame, KLT 
feature tracking is performed and RANSAC is 
used for tracking error correction. Finally, the 
position and orientation of HMD camera can 
be estimated, and thus the VMRL model of 
preoperative CT can be rendered on the camera 
image for AR visualization. 

�� Automatic Image-to-Patient 
Registration

The relationship between all of the coordinate 
systems for image-to-patient registration is 
shown in Figure 2. There are two coordinate 
systems used here; one is the coordinate system 
of preoperative CT image CMI and the other 
is the coordinate system of the Kinect, which 
is considered as the world coordinate system 
CW, i.e. the physical space herein. The image-
to-patient registration aligns the preoperative 
CT images to the position of the patient, and 
the transformation for alignment is denoted as 

W
MIT .

In this study, Microsoft Kinect is utilized for 
extracting the patient’s facial data in the physical 
space. Since the color sensor of the Kinect and 
its depth sensor were calibrated in advanced, 
each pixel (x, y)in the color image is assigned 
a depth value D(x, y)obtained from the depth 
image [30]. It is assumed that the color camera 
of Kinect follows the pin-hole camera model 
[31]. Hence, the relationship of a 3-D point 
in the physical space P = (X, Y, Z, 1)T and its 
projection point p = (x, y, 1)T on the image are 
expressed by Eq. (1):
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Where s is a scale factor. K is the matrix 
representing the intrinsic parameters of camera, 
which comprises the focal lengths (fx,fy) and 
the principle point(cx, cy). E is called extrinsic 
parameters including a rotation matrix R and a 
translation vector T. Here the 3-D coordinate 
system of Kinect color camera is considered as 
the world coordinate system Cw, and thus Eq. (1) 
can be written as

sp KP=  			               (2)

Giving a pixel in the color image (x, y) and its 
corresponding depth D (x, y), the 3-D coordinate 
(X, Y, Z) of this point can be calculated by using 
Eq. (3):
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To generate facial data of the patient, first 
a region of interest (ROI) representing the 
patient’s face in the Kinect color image is 
selected manually. For all pixels within this ROI, 
their 3-D coordinates are assigned by using Eq. 
(3) and form a set of point cloud, denoted as 
Pface. The set of point cloud represents the facial 

Improved ICP 
surface registration

Extract CT 3D volume

Registration stage

Extract real surface data

Generate VRML model

Real-time AR stage

KLT feature tracking

RANSAC-based correction

Estimate camera 
pose and position

Render VRML model

Initialization

Figure 1: An overall flowchart of the proposed system.

Figure 2: Spatial relationships among the involved coordinate systems for the image-to-patient registration.
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data of the patient in physical space. Meanwhile, 
the color information of the same ROI, called 
facial template Iface, is also stored for the next 
step, i.e. the AR camera localization. The other 
surface data for registration is extracted from 
the preoperative CT images of the same patient 
by using commercial software named AMIRA 
[32], and a VRML model of this surface data 
is constructed for AR visualization. The point-
cloud form of the VRML model, denoted as the 
reference point dataset PCT, is used for the image-
to-patient alignment.

In order to align these two surface data, we have 
designed an EICPalgorithm to accomplish the 
surface registration task. The EICP algorithm is 
basically based on the original ICP registration 
algorithm, but some steps are added to overcome 
the disadvantages of traditional ICP. Assuming 
the facial data P1is the floating data F = {f1, 
f2,…,fm}and the CT surface P2is the reference 
data Q = {q1, q2,…, qn}, original ICP uses rigid 
transformation to align these two 3-D data point 
sets in an iterative manner. In each iteration of 
ICP, firstly every point fiin F finds their closest 
point qj in Q, and a cost function C is evaluated 
based on the distance of each corresponding 
pair (fi, qj). In the EICP algorithm, we modified 
the cost function C of ICP by adding a 
weighting function to the distance of all closest 
corresponding pair (fi, qj) to deal with the 
problem of outliers, as shown in Eq. (4):
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Where wi is a weighting function, determined 
according to the median of distances of all the 
corresponding pairs, as defined by Eq. (5):
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Furthermore, a random perturbation strategy 
is added to provide the algorithm the ability to 
escape from the local minimum. The way that 
ICP reaches a local minimum acts as a gradient 
descent approach. In each iteration of ICP, the 
cost function is evaluated at the current solution 
and then move along the direction of gradient 
to the local minimum. When the registration 
goes to convergence, we can get a transformation 
solution T which projects a set of points onto 
another set of points, and the total distance 
between these two point sets is the smallest. 

When the facial data of patient and the 
preoperative CT surface data have been 

registered, the transformation between the CT 
coordinate system and the real world coordinate 
system is thus estimated. The transformation 
is then applied to a pre-constructed VRML 
model of preoperative CT, transforming the 
VRML model to the position of patient for AR 
visualization.

�� Pattern-free AR visualization

In this study, a HMD-based AR system 
featuring on its pattern-free camera localization 
is proposed. The flowchart is shown in  
Figure 3. First, we check whether the patient’s 
face is in the FOV of the AR camera by 
using a SURF face detection approach. If the 
patient’s face is detected, a SIFT-based face-
matching algorithm is applied to find the 
correspondence between these two images. Once 
the corresponding relationship is established, the 
3-D coordinate of the SIFT features can thus be 
assigned to the corresponding features on the 
image of the AR camera. Therefore, the extrinsic 
parameters of the AR camera can thus be estimated 
by using the 3-D coordinate of these features. 
Since the AR camera is movable, after estimating 
the extrinsic parameters on the first frame where 
the face was detected, a feature-point tracking 
algorithm, i.e. KLT tracker, is embedded into a 
RANSAC framework to correct tracking-failed 
points. As a result, the extrinsic parameters of the 
AR camera can be estimated continuously, and the 
anatomical information of the preoperative CT can 
thus be rendered on the images of AR camera in a 
stable and smooth manner.

Experimental Results

�� Hardware devices

The key image acquisition device in the proposed 
system is Microsoft Kinect. The imaging 
components of the Kinect sensor comprise a 
color camera, an infrared transmitter, and an 
infrared CMOS camera. The color camera 
acquires images with 640×480 pixels in 30 
frames per second (fps). The infrared transmitter 
projects a pattern of IR dots into the physical 
space, and the depth information of this scene is 
then reconstructed by the infrared camera. After a 
calibration procedure on the color camera and the 
infrared camera, depth information obtained by 
the infrared camera can thus be mapped to each 
pixel on the color image. According to Khoshelham 
[28], the error of Kinect depth estimation is only a 
few millimetres when the object is located less than 
one-meter distance to the cameras.
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Another device utilized for AR visualization is 
a head mounted display (HMD) device. This 
HMD device is mounted with a CCD camera 
with resolution 640x480 on its front to capture 
the scene of the physical space. By fusing the 
anatomical information of the preoperative 
images on the images captured by the attached 
camera, the AR visualization can thus be 
displayed on the HMD screens. The HMD and 
camera module used in the study is the Iwear-
VR920 made by VUZIX Inc.

�� Accuracy evaluation of image-to-
patient registration

In order to evaluate the accuracy of the image-
to-patient registration of the proposed system, a 
plastic dummy head was utilized as a phantom. 
Before scanning CT images of the phantom, 
five skin markers were attached on the face of 
the phantom, as shown in Figure 4(a). Since 
the locations of these skin markers could easily 
be identified in the CT images, these markers 
were considered as the reference to evaluate the 
accuracy of registration. Meanwhile, as shown in 
Figure 4(b), a commercial 3-D digitizer - G2X 
produced by MicroScribe [33], was utilized to 
establish a reference coordinate system and 
estimate the location of the markers in the 
physical space. According to its specification, the 
accuracy of G2X is 0.23 mm, which is suitable 
for locating the coordinates of skin markers as 
the ground truth for evaluation.

Figure 5 shows the setup ofthe Kinect, the 
digitizer, and the preoperative medical images in 
the experiment for accuracy evaluation. Before 
evaluation, a calibration step was performed to 
find the transformation Digi

WT  between Kinect 

CW, i.e. the world coordinate system, and the 
digitizer’s coordinate system CDigi. To perform 
the calibration, a triangular prism attached with 
chessboard patterns, as shown in Figure 4(c), 
was placed in the FOV of Kinect sensor. Corner 
points of the chessboard were selected by the 
digitizer and on the color image obtained by the 
Kinect. The two sets of 3-D points, represented 
by the coordinate systems of the digitizer and 
the Kinect respectively, were used to estimate a 
transformation Digi

WT  by using least mean square 
(LMS) method. Therefore, the 3-D points 
reconstructed by Kinect can be transformed to 
the digitizer’s coordinate system CDigi.

Firstly, as shown in Figure 5(a), a plastic dummy 
head was placed in front of the Kinect at a 60-cm 
distance. The G2X digitizer was used to obtain 
the 3-D coordinates of these markers, and the 
Kinect was utilized to reconstruct the head’s 
surface. Its depth information was sampled into 
a point cloud with approximately 220 points. 
The point cloud was transformed to the CDigi 
by applying Digi

WT  , and then registered to the 
preoperative CT images by using the EICP 
algorithm. Image-to-patient registration is 
evaluated by calculating the target registration 
error (TRE) [34-37] of the five skin markers.The 
TRE for evaluation is defined as

, ,( )CT i W face iTRE M MI T M= −  	               (9)

whereMCT,idenotes the coordinate of the i-th 
marker in the CT coordinate system, and 
Mface,iis the coordinate of the i-th marker in 
CDigi. Transformation MI

WT  represents the 
rigid transformation obtained from the EICP 
algorithm. Figure 5(b) shows the initial 
spatial position of the reconstructed facial data 
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and correction
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and orientation
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Figure 3: Flowchart of the proposed pattern-free AR visualization.
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(magenta) and CT surface data (cyan), while 
Figure 5(c) shows the registration result. The 
image-to-patient registration procedure was 
performed repeatedlyin 100 times, and each time 
we slightly shift the location and orientation of 
the phantom.The TREs at each registration 
procedure were recorded and the means and the 
standard deviation are shown in Table 1. The 
mean TREs of the skin markers are within a 
range of 2~4 mm.

Next, we tested the proposed EICP algorithm 
with other ICP-based algorithm on the Stanford 
bunny [34]. The point numbers of Stanford 
bunny is 40256, and one hundred points were 
randomly selected from the original data set. 
Then we applied a geometric transform to 
generate the floating data by rotating 50o along 
x-axis, y-axis and z-axis, respectively. The original 
Stanford bunny was regarded as the reference 
data, the initial positions of reference data and 
floating data are shown in Figure 6(a). The 
EICP, Adaptive-ICP [35], and the Random-ICP 
[36] were applied to register the floating data 
to the reference data, and the registration result 
is shown in Figure 6(b)-6(d). In additions, 
the root-mean-square (RMS) vs. the number 
of iterations for EICP algorithm is shown in 
Figure 6(e). We also calculated the RMS of the 
distance between registered floating points and 
their reference points to compare the accuracy 
of these three ICP-based algorithms. The results 
are listed in Table 2. Obviously, both of the 
Adaptive-ICP and Random-ICP were trapped 
into a local optimum, while the EICP shows its 
ability to find a better solution which is much 
closer to the global optimum.

�� Working range of the image-to-patient 
registration

In order to determine the working range of 
the image-to-patient registration, we evaluated 
the registration accuracies,i.e.TREs,in various 
distances from the Kinect sensor to the dummy 
head. The distancesfrom the Kinect sensor to the 
dummy headwere set from 55 cm to 95 cm with 
a 5-cm interval. At each position, the image-
to-patient registration procedure was repeated 
10 times to calculate a mean TRE of the skin 
markers. The graph of the mean TRE at each 
position versus distance is shown in Figure 7(a).

From Figure 7(a), the mean TRE is around 
3.5 mm and increases slightly within the range 
between 55 cm to 75 cm. When the distance 
exceeds 75 cm, the mean TRE continuously 
increases to around 5 mm as the distance 
increases. Figure 7(b) reveals the relationship 
between the numbers of the surface data points 
captured by Kinect and the distance between the 
Kinect and the dummy head. When the distance 
increases, the number of points Pfacein ROI 
relatively reduces. The reduction in the number 
of surface data points causes the increment of 
mean TRE. Figure 7(c) shows the computing 
time cost for registration at different distances. 
The time cost of image-to-patient registration is 
reduced with the increment of distance because 
of the reduction in the number of surface data 
points. Therefore, considering the trade-off 
between the registration accuracy andcomputing 
cost, the distance at 70 cm to 75 cm seems to 
be an appropriate choice for a suitable working 
distance for the proposed system.

Figure 4: Tools to evaluate the accuracy of the image-to-patient registration (a) plastic dummy head (b) MicroScribe G2X digitizer (c) traingular prism for 
coordinate system calibration.
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(a)

 

                                    (b)

 

(c)    
Figure 5: Accuracy evaluation for image-to-patient registration. (a) Scene of experimental setup. (b) Initial position of the two surface data sets for 
registration, displayed in VR. The points in magenta are facial surface reconstructed by Kinect, and the points in cyan are CT surface points. The white 
spheres are the skin-attached markers in physical space and the yellow spheres stand for the coordinates of these markers in CT coordinate system (c) 
Registration result after performing the EICP algorithm.

Table 1: Target registration error of each skin-attached marker after image-to-patient registration.
Target 1 Target 2 Target 3 Target 4 Target 5

Mean TRE (mm) 3.47 2.22 3.06 3.55 3.77
Standard deviation (mm) 1.49 0.61 0.84 1.59 1.44
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                          (a)                                                                  (b) 

(c)                                                   (d)  

 
(e) 

Figure 6: Registration results of Stanford bunny (a) Initial position (b) Result of the proposed EICP algorithm (c) Result of Adaptive-ICP algorithm (d) Result of 
Random-ICP algorithm (e) Rms vs. iteration iterations curve for EICP the algorithms.

Table 2: RMS results of each registration algorithm.
EICP Adaptive-ICP Random-ICP

RMS(unit) 0.52 28.77 27.25
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(a)  

(b) 

(c)
 

Figure 7: Experimental results for analyzing the accuracy at various distances. (a) Mean TRE when the dummy head placed at different distance from 
the Kinect. The error bars stand for the standard deviations of TRE. (b) The relationship between distances and number of points reconstructed from 
ROI. (c) Time cost for registration at different distance.



937

ResearchA Kinect-based Medical Augmented Reality System for Craniofacial Applications Using Image-to-Patient 
Registration

Another factor which might affect the 
registration accuracy is the capturing angle 
between the Kinect and the subject. Suppose the 
central line perpendicular to the Kinect is zero 
degree. Therefore, under the situation that the 
dummy head is placed at the 70-cm distance 
from the Kinect, we rotated the Kinect from 
-20 to 20 degrees and estimated the TRE every 
5 degrees. The mean TREs at different angles 
were estimated and revealed in Figure 8. The 
experimental results show that in angles between 
-15∘to 15∘, the mean TREs are slightly increased 
when the rotating angle is away from the central 
line. As a result, making the Kinect facing the 
subject as straight as possible ensures relative 
good performance.

Augmented reality visualization results

The proposed AR system was tested with two 
subjects -aplastic dummy head and a real 
human. In the dummy head case, its VRML 
model constructed from CT imagesor CT image 
slices were rendered in the AR images. The AR 
visualization results from different viewpoints 
are shown in Figure 9. The preoperative CT 
model is well aligned to the position of dummy 
head. When the camera starts moving, SIFT 
features are tracked by KLT algorithm, and the 
extrinsic parameters of the camera are estimated 
frame by frame.

The proposed system had also been tested on 
a real human case. CT images of the subject 

are obtained beforehand. Head surface 
data and skull surface data were extracted 
respectively to construct their VRML models 
for AR visualization. Figure 10(a) shows the AR 
visualization results with the reconstructed facial 
surface, while Figure 10(b) shows the rendered 
skull surface.

Conclusion

For a medical AR system, image-to-patient 
registration and AR camera localization are two 
primary key issues. Traditionally, the image-
to-patient registration is accomplished by the 
aids of stereotactic frame or skin markers. 
These approaches usually cause discomfort 
or inconvenience to the patient. On the 
other hand, in the issue of the AR camera 
localization, a known pattern is required to be 
placed within the FOV of the AR camera for 
the purpose on estimating extrinsic parameters 
of the camera.In this study, these shortcomings 
are improved. In the Kinect based medical 
AR system we demonstrated, a marker-free 
image-to-patient registration is accomplished 
by utilizing a Microsoft Kinect sensor to 
construct the surface data of a patient, and an 
EICP based surface registration technique is 
performed to align the preoperative medical 
image model to the real position of the 
patient. Moreover, a HMD mounted with 
a CCD camera is cooperated with the color 
camera of the Kinect to accomplish a pattern-

Figure 8: The mean TREs in different camera angles. Error bars stand for standard deviation of TRE.
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(a) 

 
(b) 

Figure 9: Augmented reality visualization results of the proposed medical AR system using the plastic phantom head as testing subject. (a) Rendering 
VRML model of preoperative CT. (b) Plotting CT slice in HMD camera frame.

  
(a)                                      (b)                     

Figure 10: Augmented reality visualization result of real human case. (a) Rendering VRML model of preoperative CT. (b) Rendering VRML model of skull 
extracted from CT image.

free AR visualization. A SIFT-based feature point 
matching and a RANSAC-based correction 
are integrated to solve the problem of the AR 
camera location without using any pattern, and 
our experimental results demonstrate that the 
proposed approach provides an accurate, stable, 
and smooth AR visualization.

Comparing to conventional pattern-based AR 
systems, the proposed system uses only nature 
features to estimate the extrinsic parameters 
of the AR camera. As a result, it is more 
convenient and practical to be utilized because 
the FOV of the AR camera is not limited on 
the visibility of the AR pattern. A RANSAC-
based correction technique is proposed 
to improve the robustness of the extrinsic 
parameter estimation of the AR camera. The 
proposed system has been evaluated on both 

image-to-patient registration and AR camera 
localization with a plastic dummy head. 
The system has also been tested on a human 
subject and promising AR visualization is 
demonstrated. This study is just a preliminary 
implementation of a marker-free and pattern-
free medical AR system for craniofacial 
surgeries. In the future, extensive clinical trials 
are expected for further investigation. 
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