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ABSTRACT
Objectives:

Learning is a complex process requiring support from various cognitive domains. Neuroimaging 
studies of clinical populations have linked various cognitive impairments with dysfunctions 
of the default mode network. This study investigates whether there is a fundamental deficit 
contributing to various sub-types of specific learning disability in children. 

Methods:

Resting-state functional connectivity of the default mode network was examined using seed-
based correlation and network-based statistical analyses. 

Results:

The seed-based functional connectivity analysis revealed reduced functional connectivity in 
left superior frontal gyrus within the default mode network in children with specific learning 
disability, compared with typically developing children. Further, network-based statistical 
analysis showed reduced connectivity between superior frontal gyrus and sub-network 
regions, such as bilateral inferior frontal gyrus and bilateral posterior  cingulate cortex, 
associated with executive function.

Conclusion:

This study reveals that, in addition to the specific difficulties for the sub-types of SLD, reduced 
executive function is a fundamental deficit that generalized across children with difficulties 
in reading and/or math. The study also contributes to the understanding of the role of the 
default mode network in specific learning disability. These findings can lead to further clinical 
implications, including early diagnosis and development of effective interventions.
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of self-referential information, including the 
monitoring, evaluation, and integration of self-
related stimuli [36], mind-wandering [37,38], 
executive function [39], memory [40,41], 
semantic classification [42] and processing speed 
[43]. Taken together, these findings indicate 
that the DMN may have a significant impact on 
sophisticated learning processes. 

Previous studies have reported dysfunction of 
regions that are part of the default mode network 
in the performance of non-socioemotional tasks, 
such as such as a visually-guided motor task [44], 
a spatial working memory task [45] and a verbal 
learning test [46]. In other words, the high 
resting metabolic activity, which presumably 
supports complex mental activities, may also be 
impaired in children with SLD. However, the 
role of DMN in SLD has been overlooked. The 
current study, therefore, sets out to investigate 
1) whether atypical activation(s) and/or 
connectivity(ies) of the DMN may be observed 
among children with SLD in an unconstrained 
resting-state, and 2) to determine whether the 
atypical functional connectivity, if any, are 
pervasive across the entire network or restricted 
to a regional specific area within the network. 
To achieve the goals, DMN functionality was 
studied at rest using functional connectivity MRI 
(fcMRI). The technique was used to assess the 
pattern of spontaneous occurring fluctuations in 
the blood oxygenation level-dependent (BOLD) 
signal within the default network, providing 
a measure of functional organization and 
functional engagement of this network at rest. 
Base on previous evidence, it was hypothesized 
that regions associated memory and executive 
function are two components affecting all sub-
types of learning disabilities. Consequently, it 
was expected that different pattern(s) activation 
and functional connectivity between children 
with and without SLD would appear in regions 
involved in memory (i.e. hippocampus & 
precuneus) and executive functioning (i.e. 
prefrontal cortex).

Methods

�� Participants

Twenty-two 10- to 11-year-old schooling 
children in Taipei City volunteered for the study, 
including twelve children with specific learning 
disabilities (SLD group) and ten age-matched 
typically developing children (control group). 
Children with SLD demonstrated evident 
academic learning difficulties (e.g. reading and 

Introduction

Schooling children who are diagnosed with 
specific learning disabilities (SLD) often struggle 
with various areas of academic performance due 
to a number of cognitive processing difficulties 
[1,2]. In the situation where the academic 
performance of a child fells below the age-
matched level, potential learning disabilities can 
be identified by several standardized measures of 
cognitive abilities [3-5]. For example, based on 
the Diagnostic and Statistical Manual of Mental 
Disorders [6], selective impairments are found in 
numerical and arithmetical cognition [7,8] and 
language abilities [9-11] in children with SLD. 
That is, depending on different sub-types of SLD, 
inputting information into the central neural 
system, retrieving information from the brain, 
and outputting the formulated information may 
be negatively affected. However, the difficulties 
demonstrated by children with SLD may 
result from fundamental deficits in cognitive 
abilities, such as auditory perception [12-14], 
visual perception [15-17], temporal processing 
[18,19], abstraction [20], memory [21-23], or 
motor functioning [24,25].

Since SLD are directly related to the complex 
processes and functions of the central neural 
system and affect the ability to store, process, or 
communication information [26], it is important 
to further investigate the core deficits of SLD with 
neuroimaging techniques. Functional magnetic 
resonance imaging (fMRI) studies have provided 
consistent evidence on atypical activations 
among children with SLD in various cognitive 
tasks [27-30]. Nevertheless, in recent years, 
attention has been paid to potential functional 
alterations in large-scale brain networks and 
how the alteration(s) within these networks may 
contribute to the observed cognitive deficits [31-
33]. Default mode network (DMN), one of the 
well-established large-scale networks, is a set of 
brain regions that ‘co-active’ when the brain does 
not actively engage in goal-directed cognitive 
tasks and the co-activation is suppressed during 
task performance [34]. The DMN was defined 
by an emergent body of evidence on resting-
state fMRI (rs-fMRI) showing high degree of 
functional connectivity between three major 
brain regions, including precuneus/posterior 
cingulate cortex (PCC), lateral and inferior 
parietal cortex, and medial prefrontal cortex 
(mPFC) [34,35]. Functional connectivity 
between brain regions plays an important role 
in cognitive processes. It has been reported 
that the DMN was involved in the processing 
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writing impairments) and had been two-year 
behind the typically developing students. They 
were evaluated and identified by the Special 
Education Division, Department of Education 
of Taipei City Government. None of the 
children with SLD had any other neurological 
or psychiatric disorder. All participants and their 
parents signed written consents prior to the data 
collection to ensure their understanding of and 
willingness to participate the study.

Children’s intelligence quotient (IQ) was 
assessed using the Wechsler Intelligence Scale 
for Children [47]. The IQ assessments generated 
overall score and four sub-score indicating verbal 
concept formation, memory span, reasoning, and 
attention. The overall performances of the two 
groups on IQ assessment were compared using 
t-tests. No significant between-group difference 
was found in IQ, t (20) = .66, p = .16. However, 
children with SLD were significantly worse than 
the control at verbal concept formation, t (20) = 
2.57, p = .21. Demographic information and the 
assessment outcomes are shown in Table 1.

�� MRI Data acquisition

Structural and functional MRI data of all 
participants were acquired using a 3-Tesla 
scanner (MAGNETOM Prisma, Siemens, 
Germany) with a 32-channel head coil. During the 
scan, participant’s head was fixed to the location 
of the coil with sponges to minimize motion 
artifacts. Using an auto-align technique; the images 
acquired were parallel to anterior-commissure-
posterior-commissure line. In a single session, each 
participant underwent the structural scan, which 
took about 3 mins and 36 secs, prior to the resting-
state fMRI acquisition, which was about 6 mins 
and 40 secs. The total scan time for a participant 
was approximately 10 mins.

For the referential anatomy, a magnetization-
prepared rapid gradient echo (MPRAGE) sequence 
was applied to acquisition of a whole brain high-

resolution T1-weighted image in a coronal view. 
The sequence parameters were TR/ TE = 2000 ms/ 
2.98 ms, inversion time = 900 ms, field of view 
(FOV) = 192 mm × 256 mm, matrix size = 192 x 
256, in-plane spatial resolution = 1 mm × 1 mm, 
and slice thickness = 1 mm without gaps.

The resting-state fMRI was performed with 
a gradient-echo echo-planar imaging (EPI) 
sequence. Before starting the image acquisition, 
the participants were instructed to relax with 
their eyes closed while remained awake and 
think of nothing in particular throughout the 
scan. Wakefulness was monitored throughout 
the scan via an intercom linked to the scanner 
chamber. The fMRI acquisition parameters were 
TR/TE = 2000 ms / 30 ms, FOV = 192 mm × 
192 mm, matrix size = 64 × 64, in-plane spatial 
resolution = 3 mm × 3 mm, slice thickness = 3 
mm, interleaved scanning, and flip angle = 90°. 
For each participant, thirty-seven trans-axial 
slices with no gap were acquired to cover the 
whole brain volume. Each resting-state fMRI 
run contained 200 image volumes.

�� Functional MRI preprocessing

Data preprocessing was carried out using Data 
Processing Assistant for Resting-State fMRI 
[48]. Functional images were realigned to correct 
for motion, corrected for errors in slice timing, 
spatially transformed to standard stereotaxic 
space (based on the Montreal Neurologic 
Institute coordinate system), and smoothed with 
a 6-mm full-width half-maximum Gaussian 
kernel. There was no participant with movement 
greater than 3 mm of translation or 3° of rotation. 
Also, no significant difference between the total 
range of movement across any axis of translation 
or rotation between the two groups was found. 

�� Seed-based functional connectivity (FC) 
analysis 

Functional connectivity analysis was conducted 
with a seed-region approach using the posterior 

Table 1: Demographic and clinical characteristics of the two groups of participants. Group means are shown with standard 
deviations in brackets.

SLD control p-value
Age (years) 9.59 (0.52) 9.45 (0.68) > 0.05
Age range 8.58 – 10.50 8.58 – 10.17 -
Gender (male / female) 10 / 2 6 / 4 > 0.05
year(s) of education 3.57 (1.27) 3.40 (0.55) > 0.05
IQ (overall) 97.60 (9.56) 106.51 (10.51) > 0.05
IQ-Similarities 8.50 (3.16) 12.56 (3.32) = .021
IQ-Digit Span 10.13 (3.76) 12.89 (3.76) > 0.05
IQ-Matrix Reasoning 8.63 (1.60) 9.67 (4.18) > 0.05
IQ- Symbol Search 10.00 (2.27) 11.56 (2.40) > 0.05
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cingulate cortex (PCC) as defined in the 
automated anatomical labeling atlas (AAL) [49]. 
For each region of interest (ROI), analyses for 
individual participants were conducted using 
the General Linear Model (GLM) with the 
time series for the ROI and for the nuisance 
covariates (time series regressor for global signal 
intensity, white matter, cerebrospinal fluid, 
& six motion parameters) as predictors. These 
nuisance signals are typically adjusted for in 
resting-state functional connectivity studies due 
to their reflection of global signal fluctuations of 
non-neuronal origins (e.g. physiological artifacts 
were linked with variables, including cardiac 
and respiratory cycles, CSF motion, and scanner 
drift) [50]. Data was then bandpass filtered 
from 0.01 to 0.12 Hz in order to remove low 
frequency noise, including slow scanner drifts 
and influences of higher frequencies reflecting 
cardiac and respiratory signals [51]. To enforce 
a Gaussian distribution of the correlation data, 
the Pearson’s correlation r was then transformed 
into z-scores using the Fisher z-transformation. 

�� Network-based statistical (NBS) analysis

Using the functional connectivity toolbox 
[52], each of the 90 brain regions, 45 in 
each hemisphere, defined by AAL template 
was considered a node [53]. The functional 
connectivity of the brain could be represented as 
an edge. To obtain the mean time series of each 
region, the time series of all voxels a particular 
region were averaged. Then, multiple linear 
regression models were used to further remove 
multiple sources of variance of the BOLD signal 
from the mean time series. The regressors were 
composed of the estimated profiles of head 
motion, three for translation and three for 
rotation, and the global brain activity. The raw 
mean time series of the corresponding regions 
were replaced by the residuals of this regression. 
Further, Pearson’s correlation coefficients 
between the residual time series of each possible 
pair of the 90 regions were computed to create 
a symmetric correlation matrix (i.e., functional 
connectivity matrix) for each subject, in which 
the nodes represented brain regions and edges 
represented the undirected connection. Finally, 
the connectivity matrix was used for the network-
based statistical [54] analysis.

The network-based statistics was used to 
identify potential alteration(s) of connectivity 
in any connected sub-networks in children with 
SLD [54]. The NBS dealt with the multiple 
comparison problem posed by connectomics 

data through evaluating the null hypothesis at 
the level of interconnected sub-networks. In this 
method, the identification of sub-networks was 
similar to the recognition of significant clusters 
of activation in the cluster-based thresholding 
strategies used in the voxel-wised MRI studies 
[55,56]. The NBS analysis attempted to identify 
potential connected structures formed by an 
appropriately chosen set of supra-threshold 
links. The topological extent of such structure 
was then applied to determine its significance. 
To establish a set of supra-threshold links, 
the primary threshold (i.e., test statistic) for 
each pair-wise association was computed. The 
null distribution of the number of edges was 
empirically obtained using a nonparametric 
permutation (5000 permutations) to assess the 
significance of each connected edge.

Results

The seed-based functional connectivity analysis 
revealed, compared with the control group, 
decreased connectivity in the frontal gyrus 
within the DMN in the children SLD, especially 
in superior frontal gyrus. The resting-state 
functional activations of the two groups are 
shown in Figure 1. The seed-based correlation 
analysis reported the decrease of functional 
connectivity in the frontal gyrus within DMN 
reached significance (p < 0.001), especially in 
superior frontal gyrus. 

Further, the results of NBS analysis revealed 
that weakened connectivity within sub-networks 
in the children with SLD, compared with the 
control group (p-value < 0.05). Significant 
disruption within sub-network was found in the 
frontal gyrus among the SLD group, especially 
in superior frontal gyrus. The weakened 
connectivity within sub-networks (Figure 2) 
comprised edges between the left superior frontal 
gyrus (SFG) and the bilateral inferior frontal 
gyrus (IFG), bilateral posterior cingulate cortex 
(PCG), and bilateral superior  occipital  gyrus 
(SOG); between orbital part of superior frontal 
gyrus (ORB) and bilateral PCG; between the 
bilateral IFG and bilateral SOG; between the 
rights IFG to left IFG. 

Discussion

The study contributes to our understanding 
of whether the DMN plays a role in SLD. 
The study acquired resting-state functional 
connectivity data from children with SLD and 
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Figure 1: The functional connectivity revealed that (a) the SLD group had decreased functional connectivity in the superior frontal gyrus of DMN compared 
with (b) the control group. The color bar represents z-scores.

 

Figure 2: The NBS analysis revealed reduced functional connectivity between the sub-networks of DMN in the SLD patients compared with the control group 
(p-value<0.05).
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IFG and PCG. Comprehensive evidence has 
linked IFG with executive function whilst SFG 
and PCG are reported to involve in the executive 
control of attention [66] and working memory 
[67] respectively. Therefore, reduced functional 
connectivity in these regions within the DMN 
may be considered as additional evidence 
showing that the disadvantage for children 
with SLD lies in impairments of executive 
functioning. Also, the current evidence may 
account for the mild attention and working 
memory deficit observed among children with 
SLD. A large body of evidence has associated 
human frontal lobe with this particular cognitive 
ability, some earlier literature even referred tasks 
involving executive function as ‘frontal lobe task’ 
[68]. The important perspective of executive 
function in relation to learning is regulating 
goal-oriented behavior. Several studies have 
demonstrated executive function deficits among 
children with learning disabilities [69,70]. Some 
even suggest that executive function may be a 
predictor for learning ability among children 
[71]. Intriguingly, with this particular cognitive 
deficit presented in all sub-types of SLD, the 
underlying neural mechanisms seem to vary 
across groups. Further research is necessary to 
identify potential neural markers for SLD sub-
types.

There are however a few limitations in the 
current study, which are also found in previous 
studies involving children with SLD. Due to 
recruitment limitation, acquiring a large sample 
size was a challenge. Consequently, within this 
small group, we could not further examine 
functional connectivity within different sub-
types. Moreover, detailed cognitive profiles and 
level of SLD severity of the participants were not 
available. Cognitive abilities along with severity 
can account for not only the potential individual 
differences but also the variation of functional 
connectivity reported by different studies. 

Conclusions

The DMN is a large-scale brain network 
involving in complex cognitive processes that 
support learning ability. The study employed 
multimodal functional MRI techniques and 
analyses to investigate the role of DMN in 
children with SLD. Among children with SLD, 
atypical functional connectivity was identified 
within the SFG as well as between SFG and other 
regions associated with executive control. Our 
findings advance the field by providing evidence 

typically developing children. Our findings 
revealed decreased functional activation in 
the superior frontal gyrus as well as reduced 
functional connectivity within the sub-network 
of DMN. Despite other cognitive abilities linked 
with the frontal gyrus, this brain region has been 
closely associated with executive function [56]. 
Indeed, impaired cognitive functions have been 
constantly identified among various populations 
with developmental disorders [58,59], leading 
to reduced executive function and control of 
attention.

The results of the current study support the 
predictions that functional connectivity in 
children with SLD is distinctive from typically 
developing children and the difference can be 
observed within the DMN. This evidence is 
partially in line with previous studies [60] in terms 
of disrupted functional connectivity in children 
with various sub-types of learning disability. 
Despite the disrupted regions reported in the 
previous studies have been inconsistent within 
and across sub-types of learning difficulties, 
dysfunctions of the frontal regions have been 
constantly identified. Taking children with 
reading difficulties for example, Farris, Odegard, 
Miller, Ring, Allen, and Black [61] reported 
reduced functional connectivity between the 
inferior frontal regions using rs-fMRI whilst 
reduced connectivity between left posterior 
temporal areas and left inferior frontal gyrus was 
demonstrated by Schurz et al. [31]. Children 
with dyscalculia, on the other hand, have also 
demonstrated dysfunction in areas within the 
frontal lobes [62,63] along with other regions, 
such as anterior cingulate and parietal cortices. 
Variations of sub-type of SLD may account 
for the discrepancies reported in the previous 
and the current study. However, the potential 
factor(s) leading to within sub-type variations is 
yet to be investigated. In the studies mentioned 
above, including the current study, participants 
were children of different age range. It is possible 
that functional connectivity between regions 
change as age, further evidence is required to 
confirm/dismiss this potential developmental 
factor. Another potential factor leading to the 
discrepancies is severity of learning disabilities. 
It is widely reported that the effectiveness of 
interventions largely depends on level of severity 
of learning disabilities [64,65]. However, this 
issue receives little attention in neuroimaging 
studies in SLD. 

Further, we demonstrated reduced connectivity 
between bilateral IFG and between SFG and 
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showing that the impaired neural mechanism 
underlying SLD was largely associated with 
reduced executive function. The current study 
has a couple of clinical implications. Firstly, 
atypical functional connectivity within the 
DMN may be a potential neural marker for 
clinical diagnosis. Secondly, interventions 
based on training of executive function could 

be a promising approach to improve learning 
performance. Nevertheless, investigators should 
also consider the importance of establishing 
complete cognitive profile for each individual, 
as it could offer valuable accounts for individual 
variations. For future research, multimodal 
imaging technique can be used to evaluate 
effectiveness of interventions.
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