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Abstract

While the efficacy of vagus nerve stimulation (VNS) to reduce seizures and improve 
comorbidities associated with pharmacoresistant epilepsy including mood as well as quality of 
life is clinically proven, the exact mechanism of VNS remains unclear. VNS exerts antiepileptic 
or anti-epileptogenic effect possibly through i) neuromodulation of release of noradrenaline 
from locus coeruleus; ii) induced profound changes in brain blood flow; iii) immunomodulation 
or anti-neuroinflammation; iv) change EEG brain functional connectivity; v) modification 
of the proteome of excitatory synapses of amygdaloid/piriform cortex; vi) modulation of 
adenosine system and DNA methylation. Beyond epilepsy, VNS is also under investigation 
for the treatment of epilepsy associated comorbidities including cognitive comorbidities 
and psychiatric comorbidities. Of importance, progression in VNS clinical efficacy over time 
suggests an underlying disease-modifying neuromodulation, which is an emerging field in 
pharmacoresistant epilepsy. With bidirectional potential clinical efficacy of VNS in epilepsy, 
a prototype neuropsychiatric illness, further research on the solid mechanisms of VNS for 
epilepsy and associated comorbidities is encouraging. 
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Introduction

Up to 30 percent of patients with epilepsy is 
pharmacoresistant [1,2], and apart from those 
who are candidates for resective surgery, most 
will continue to have disabling seizures and the 
poor quality of life with a wide range of cognitive 
and psychiatric symptoms [3-7]. Epilepsy may 
be regarded as prototype neuropsychiatric illness 
with interface of neurology and psychiatry, and 
treatment of comorbidity is likely to improve 
the overall course of illness as well as quality of 
life. Therefore, new therapies aim to modify the 
progression of epilepsy (disease modification) and 
concomitant comorbidities through by targeting 
the disease process. Vagus nerve stimulation 
(VNS) is a neuromodulatory treatment that 

is used as a palliative therapy for patients with 
pharmacoresistant epilepsy who are not suitable 
candidates for resective brain surgery or for whom 
surgery has failed [8]. VNS is also a possible 
treatment option for treatment of epilepsy 
associated comorbidities including cognitive 
comorbidities and psychiatric comorbidities. 
VNS has been proved to be effective in the 
treatment epileptic seizures, improve quality of 
life as well as progression in VNS clinical efficacy 
over time [9,10]. Currently, most of the VNS 
studies in epilepsy mainly focused on VNS 
effectiveness in seizure control. Several studies 
demonstrated that the mechanism of action 
might be related to neuromodulation of release of 
noradrenaline from locus coeruleus [11], induced 
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seizure-suppressing effect in a model for limbic 
seizures, and regarded as a potential biomarker 
for the efficacy of VNS in temporal lobe epilepsy 
[11]. Selective a2-adrenoreceptor antagonism 
in proximity of the seizure focus abolishes the 
seizure-suppressing effect of VNS [11]. The 
locus coeruleus, the most important source of 
NE in the brain [35], appears to be crucial for 
the anticonvulsive effects of VNS since seizure-
suppressive effects of VNS were prevented by 
LC lesioning [36,37]. Serotonergic transmission 
may also play a role since basal firing rates of 
serotonergic neurons in the dorsal raphe nucleus 
significantly increased after chronic VNS. 
However, this effect seems to be NE-dependent 
since selective lesioning of the locus coeruleus 
prevented this enhancement of serotonin neuron 
firing [38,39]. 

 � Induced profound changes in brain 
blood flow

Positron-emission tomography and functional 
magnetic resonance imaging of the effects of VNS 
in human beings have confirmed the influence 
the vagus nerve on higher brain structures. 
Stimulation of VNS causes increases in cerebral 
blood flow and can alter electroencephalographic 
patterns. Clinical studies with positron-emission 
tomography demonstrated that VNS increased 
blood flow to the right thalamus, the right 
posterior temporal cortex, the left putamen, and 
the left inferior cerebellum at interictal stage of 
seizures [40]; Clinical studies with functional 
magnetic resonance imaging indicated that the 
areas of significant activation in response to 
VNS were the bilateral orbitofrontal and parieto-
occipital cortex, the left temporal cortex, and the 
left amygdala at interictal stage of seizures [41]. 
Animal study demonstrated that VNS can arrest 
ongoing seizure activity (ictal stage of seizures) 
by ultimately decreasing hippocampal blood 
flow [13].

 � Anti-neuroinflammation or 
immunomodulation 

Extensive experimental and clinical evidence 
supports a link between inflammation and 
epilepsy, both in terms of epileptogenesis and 
the long-term consequences of seizures, which 
indicates that activation of inflammatory 
processes in the brain is a common feature of 
various epileptic disorders [42,43]. With an 
intact vagal-immune network, VNS can dampen 
inflammatory response. The vagus nerve is 
implicated in immunomodulation as efferent 
vagus nerve fibres systemically inhibit pro-

hippocampal decreases in glucose metabolism 
[12] and blood flow [13], immunomodulation 
or anti-neuroinflammation [14,15], change 
EEG brain functional connectivity [16,17] as 
well as modification of neuronal activity and the 
proteome of excitatory synapses of amygdaloid/
piriform cortex [18], and possible modulation 
of adenosine system and DNA methylation [19-
23]. 

Comorbidities in epilepsy represent a major 
conceptual and therapeutic challenge. Currently, 
the bidirectional relation between epilepsy and 
associated comorbidities has been paid more 
and more attentions [24-26], and advances 
on the overlap of psychiatric / cognitive and 
neurologic symptoms from a pathophysiologic 
and phenomenologic perspective are becoming 
a hot topic in epilepsy. Depressive disorders 
are the most common type of psychiatric 
comorbidity in patients with epilepsy [7,27,28], 
especially in individuals suffering from refractory 
temporal lobe epilepsy. Several mechanisms of 
primary depressive disorders such as endocrine 
abnormalities, structural and functional 
abnormalities of cortical and subcortical 
structures, neurotransmitter abnormalities and 
immunological inflammation abnormalities [7], 
have an effect on cortical hyperexcitability and 
the epileptogenic process. The mechanism of 
VNS to treat epilepsy associated comorbidities 
might be through the mechanisms mentioned 
above [15,25,29,30]. Of scientific interesting, 
progression in VNS clinical efficacy over time 
and chronic VNS clearly induces long-lasting 
changes in the neuronal network involved in 
epileptogenesis [31,32], indicating that long term 
use of VNS modify the progression of epilepsy 
(disease modification or antiepileptogenesis) 
[33], and that the earlier this is done, the 
better the outcome for seizures and associated 
comorbidities control [34]. In this review, we 
will focus on the mechanisms of action of VNS 
for epilepsy and associated comorbidities. 

Mechanisms of Action of VNS for Epilepsy

 � Serotonin as a mediator of the 
antiepileptic effects of VNS 

Recent study provided convincing evidence for 
the existence of a strong causal link between 
increased noradrenergic signaling and the 
anticonvulsant effect of VNS. Increased in 
extracellular hippocampal noradrenaline (NE), 
but not of dopamine, serotonin and GABA, 
has been indicated to be responsible for its 
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inflammatory cytokine release [30]. In addition, 
VNS activates the hypothalamic-pituitary-
adrenal axis. Animal research has demonstrated 
that VNS-induced increased hippocampal 
expression of corticotrophin releasing factor and 
increased plasma levels of adrenocorticotropic 
hormone and corticosteron [14], which support 
the role of the VNS in immunomodulation or 
anti-neuroinflammation. 

 � Change EEG brain functional 
connectivity

EEG brain functional connectivity is a way to 
study brain function through the study of pair-
wise correlations, and reflects how different 
brain areas coordinate their activities. Estimating 
changes of EEG brain functional connectivity 
is indicated as a promising tool for predicting 
response to VNS [16,44]. The effect of VNS 
on functional connectivity has been studied 
using scalp EEG demonstrated that functional 
connectivity tended to be lower in the on period, 
and that this effect was maximal for responder 
patients [44]. More recently, study investigated 
the impact of VNS on brain functional 
connectivity with stereotactic EEG signals [16]. 
The results demonstrated that VNS can decrease 
or increase the functional connectivity changes 
with variable effect from patient to patient, and 
clinical responder with decreased functional 
connectivity [16].

 � Modification the proteome of excitatory 
synapses of amygdaloid/piriform cortex 

The molecular mechanisms underlying VNS 
for epilepsy are overall unclear. Plasticity of 
excitatory synapses is thought to contribute 
to the hyperexcitability of epilepsy [45]. The 
postsynaptic density (PSD) is a membrane 
specialization of the postsynaptic component of 
excitatory synapses in the CNS and the protein 
composition of the PSD is regulated by neuronal 
activity [46]. Recent study demonstrated 
that VNS modifies both neuronal activity in 
amygdala and hippocampus and the composition 
of excitatory synapses in the CNS [47], which 
suggested that activity-dependent formation of 
excitatory synapses might be molecular targets of 
VNS for epilepsy.

 � Modulation of adenosine system and 
DNA methylation

Adenosine is an inhibitory modulator of 
brain activity, and its anticonvulsant and 
seizure terminating effects, mediated by both 
receptor-dependent and receptor–independent 

pathways, have been illustrated in a wide range 
of experimental models of epilepsy and clinical 
studies [20,48-60]. Therapeutic adenosine 
augmentation is a powerful therapeutic 
strategy to suppress epileptic seizures and 
epileptogenesis [20,61-64]. Neurostimulation 
has been indicated to increase the extracellular 
adenosine concentration in the brain [21-23] 
to enhance adenosine signaling and adenosine 
A1 receptor-dependent activation. On the 
other hand, increase of adenosine levels in the 
brain might also exert receptor-independent 
effects in DNA methylation homeostasis to 
reduce DNA methylation [20,65]. There is 
every indication that agents able to increase 
adenosine availability may have a place in the 
future treatment of epilepsy via adenosine 
receptor-dependent pathway and adenosine 
receptor-independent pathway [66]. How the 
VNS modulated adenosine system and exert 
its efficacy in the treatment of epilepsy and 
modification the progression of epilepsy needs 
further investigation in the future.

Mechanisms of action of VNS for 
comorbidities associated with epilepsy

Epilepsy is a disorder of the brain characterized 
by an enduring predisposition to generate 
epileptic seizures and by the neurobiologic, 
cognitive, psychological, and social consequences 
of this condition [67]. Up to 30 percent of 
patients with epilepsy is pharmacoresistant 
[1], and apart from those who are candidates 
for respective surgery, most will continue to 
have disabling seizures and the poor quality 
of life with a wide range of cognitive and 
psychiatric symptoms [5,7]. Recurrent seizures 
induced the reorganization of neural circuits 
and activities in the brain, therefore, patients 
frequently experience cognitive, psychiatric 
and mood disorders [68]. On the other hand, 
the most recent research indicates that some 
neurocognitive and psychological comorbidities 
as well as structural brain changes predate 
the onset of seizures, with the early cognitive 
compromise being further magnified by the 
onset of epileptogenesis, and later on, by the 
chronicity of seizures [69,70]. Epilepsy, being 
regarded as a prototype of neuropsychiatric 
/neurocognitive and illness, epilepsy and 
associated comorbidities are usually frequent 
and share common underlying mechanisms with 
epilepsy. Currently, the bidirectional relation 
between epilepsy and associated comorbidities 
has been paid much more attentions [25,26,71]. 
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Currently, mechanisms of dysregulation of 
the hypothalamus–pituitary–adrenal (HPA) 
axis, and compromised raphe-hippocampal 
serotonergic transmission are well accepted 
behind epilepsy and neuropsychiatric disorders 
[72]. VNS has been proved to increase the basal 
firing rates of serotonergic neurons in the dorsal 
raphe nucleus, thus plays a role in both seizures 
and associated comorbidities.

Recently, adenosine dysfunction has been 
indicated as the underlying mechanism for 
comorbidities associated with epilepsy and 
that therapeutic adenosine augmentation 
might be effective for the treatment of epilepsy 
and comorbid symptoms in epilepsy [73]. 
Clinical as well as experimental data suggest 
that a triad of synaptotoxicity, astrogliosis, 
and overexpression of ADK, resulting in 
a deficiency of homeostatic adenosine can 
directly cause a wide range of cognitive and 
psychiatric symptoms commonly seen as 
comorbidities in epilepsy [73] as follows:

 � Adenosine and epilepsy

As introduced above, extensive experimental and 
clinical evidence demonstrated that dysfunctional 
astrocytic adenosine homeostasis as one of the 
early pathophysiologic mechanisms of epilepsy, 
and therapeutic adenosine augmentation 
exerts anticonvulsant and seizure terminating 
effects, mediated by both receptor-dependent 
and receptor–independent pathways 
[20,54,57,61]. 

 � Adenosine and cognition

Adenosine affects cognitive processes on several 
mechanistic levels through locally refined 
neuronal and astroglial A2AR signaling effects 
and modulation of glutamatergic, dopaminergic, 
GABAergic, and BDNF-dependent mechanisms 
[73]. Deletion of adenosine A2A receptors 
from astrocytes disrupts glutamate homeostasis 
leading to cognitive impairment [74]. Adenosine 
augmentation to the hippocampus can improve 
cognitive function [75]. These findings suggest 
that therapeutic adenosine augmentation 
might constitute a promising approach for the 
treatment of comorbid depression in a wide 
range of neurological and neuropsychiatric 
disorders. 

 � Adenosine and depression

Recent study demonstrated that astrocytic 
signaling to adenosine A1 receptor was required 
for the robust reduction of depressive-like 

behaviors in mice following 12 h of sleep 
deprivation [76]. Approaches known to increase 
adenosine level such as exercise [76,77], 
sleep deprivation [76,78], acupuncture [22], 
deep brain stimulation [23], or ketogenic 
diet [79]  have demonstrated antidepressive 
effects. S-adenosylhomocysteine, a precursor 
of adenosine, has been used for the treatment 
of major depression [80]. VNS, the most 
commonly used neuromodulation for 
pharmacoresistant epilepsy, might constitute 
a promising approach for the treatment of 
epilepsy associated comorbidities as well 
through adenosine system.

Concluding remarks

Advances on the overlap of psychiatric and 
neurologic symptoms from a pathophysiologic 
and phenomenologic perspective are becoming 
a hot topic in epilepsy. New therapies aim 
to modify the progression of epilepsy and 
concomitant comorbidities through by targeting 
the disease process. VNS has demonstrated its 
potential in pharmacoresistant epilepsy and 
comorbidities associated with epilepsy, and 
enhanced VNS efficacy over time clearly reflects 
a disease modification effects. It is crucial to 
identify and validate the biomarkers for the VNS 
therapy that track with disease progression and 
comorbidities, and predict therapeutic outcome. 
In the future, research will focus on how to 
combine neurocognitive and neuropsychiatric 
markers, allowing systematic advances in 
our understanding of the natural history of 
cognitive and behavioral disturbances in the 
epilepsies relative to the onset and progression 
of seizures. 
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