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Abstract

Background

Connexins are the channel forming constituents of hemichannels that facilitate cell-
extracellular communication, and gap junction (GJ) intercellular channels that directly 
connect the cytoplasm of interacting cells. The role of connexins in the brain is an area of 
growing interest. The purpose of this review is to highlight the current state of research and 
where future research might be headed, with particular attention to the role of connexins in 
psychology and psychiatric pharmaceuticals. 

The primary connexin isoforms in the brain include connexin45 (Cx45), Cx43, Cx36, and 
Cx30. These connexins display differential expression in the major neuronal cell types, and 
have functions including synchronization of neuronal oscillations, metabolite homeostasis, 
and release of gliotransmitters. Importantly, these processes utilize both GJ intercellular 
communication, and hemichannel cell-extracellular communication pathways. At the 
behavioral level, connexins in the brain have been shown to be involved in memory, alcohol 
indulgence, motor coordination, and anxiety. 

Conclusions

There are many compounds that broadly inhibit connexins, and a handful of targeted, 
isoform-specific, channel function agonists and antagonists. However, these compounds 
have primarily researched in areas other than the brain. Therefore, connexins potentially 
provide new pharmaceutical targets for psychiatric disorders. 
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Introduction

Gap junctions are aggregates of intercellular 
channels that directly connect the cytoplasm of 
adjacent cells. Gap junction intercellular channels 
are composed of oligomers of a family of proteins 
called connexins. The pores of these channels 
allow for the passage of small molecules, less than 
approximately 1kDa in size, thereby creating a 
conduit for direct cell-cell communication [1]. 
Importantly, gap junction intercellular channels 
form from the docking of two half-channels, 

called hemichannels, which can also facilitate 
cell-extracellular communication [2].

Connexins are expressed in nearly every cell type 
with the exception of adult skeletal muscle, red 
blood cells, and sperm [3]. The role for connexins 
in the heart in conducting the electrical action 
potential is now well defined, but their function 
in many organs and tissues, including the brain, 
remain poorly defined. Here we summarize the 
current state of knowledge on the physiology 
and pathology of connexin expression and 
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upon activation, microglia form GJs composed 
of Cx43 [23]. In co-cultures, microglia has been 
found to form Cx36-based GJs with neurons 
[21]. This has been proposed to be a potential 
route for transmission of pro-death signals from 
microglia to neurons in disease and injury.

 � Oligodendtrocytes

Oligodendrocytes express Cx29, Cx32, Cx36, 
and Cx45 [6]. Although GJs have not been 
demonstrated between oligodendrocytes, 
heterotypic (i.e. each cell contributes a different 
connexin isoform) GJs have been observed 
between oligodendrocytes and astrocytes [24]. 
The function of these heterocellular couplings 
has not been elucidated to date.

Behavioral Effects of Altered Connexin 
Expression and Function

While there has been a significant amount 
of research into the role of connexins in the 
pathophysiology of CNS injury (stroke and 
spinal cord injury) and neurological diseases 
such as Alzheimer’s (please see [4-6] for 
excellent reviews), there is little data on the 
role of connexins in behavior and psychological 
disorders. However, the studies that have 
been performed suggest diverse functions for 
connexins in behavior including addiction and 
depression. 

Some of the data comes from Cx36 knockout 
mice. Cx36 knockout mice display a reduction 
in the amplitude of gamma oscillations [25]. The 
dampening of gamma oscillations suggested these 
animals could have a deficiency in perception or 
memory. Indeed, later work showed that Cx36 
knockout mice displayed stimulus complexity 
dependent memory impairment [26]. 

Interestingly, Cx36 knockout mice also show 
altered responses to alcohol. Tests of motor 
function in Cx36 knockout mice given ethanol 
by injection gave mixed results, showing 
significantly more ataxia in an open-field test, 
but significantly improved coordination in a 
rotarod test of Cx36 knockout versus wild-
type mice [27]. The authors also tested hedonic 
valence for ethanol using a “drink-in-the-dark” 
procedure, and found that Cx36 knockout mice 
consumed significantly less alcohol than wild-
type mice. The authors attributed this difference 
to a hyper-dopaminergic state in the ventral 
tegmental area (VTA) of Cx36 knockout mice, as 
dopamine neurons in wild-type mice displayed a 
significant reduction in spontaneous inhibitory 

function in the brain, and discuss the potential 
for connexin-based therapeutics as psychotropic 
agents.

Connexin Expression in the Brain

A number of connexin isoforms are expressed 
in the brain, primarily including Cx30, Cx32, 
Cx36, and Cx43[4]. Neurons, astrocytes, 
microglia, and oligodendrocytes all express, 
and are coupled by connexins. In addition to 
facilitating cellular functions by direct cell-cell 
coupling, hemichannels also play a significant 
role in paracrine and autocrine signaling in the 
brain [4,5].

 � Neurons

Neurons have been shown to express primarily 
Cx36 and Cx45 [6]. Definitive GJ plaques 
have been identified between neurons in the in 
inferior olive, spinal cord, retina, olfactory bulb, 
visual cortex, suprachiasmatic nucleus, and locus 
coeruleus for Cx36 [7-11]. Cx45 GJs have only 
been identified in the retina and olfactory bulb 
[9]. 

 � Astrocytes 

Astrocytes have been shown to express a number 
of different connexin isoforms. Isoforms that 
have been demonstrated to form astrocytic 
GJs include Cx26, Cx30, and Cx43 [11,12]. 
In particular, Cx43 is the isoform primarily 
expressed in the astrocytyes.

One of the most important functions of 
astrocytes is metabolite homeostasis. Specifically, 
astrocytes have been shown to regulate the 
extracellular milieu in the brain, maintaining 
an ideal concentration of ions and metabolites 
for neuronal function [13,14]. Cx43 facilitates 
the process of K+, H+, and glutamate/glutamine 
homeostasis through intercellular channels by 
connecting the network of astrocytes [15,16]. In 
addition, astrocytes communicate to one another 
through gliotransmitters, which as the name 
implies, are signaling molecules released from glial 
cells such as astrocytes. Astrocytic gliotransmitters 
include ATP and glutamate which are released 
through hemichannels [5,17,18], and play a role 
in Ca2+ wave propagation, synaptic plasticity, 
neurotransmitter release at synapses, memory 
consolidation, and inflammation and cell death 
under pathological conditions [17,19,20].

 � Microglia 
Unactivated microglia can express low levels 
of Cx36, Cx43, and Cx45 [21,22]. However, 
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postsynaptic currents in the VTA in response to 
ethanol, while Cx36 knockout mouse dopamine 
neurons were resistant to this effect [27]. 

Other data have come from pharmacological 
inhibition of GJs in the brain. In one recent study, 
application of the GJ inhibitors mefloquine and 
carbenoxolone in the ventral hippocampus and 
medial prefrontal cortex significantly reduced the 
peak frequency and total power of theta rhythms 
[28]. Using an elevated plus maze and open 
field tests, it was found that bilateral injection 
of GJ inhibitors into the ventral hippocampus 
reduced anxiety-like behaviors. This effect was 
recapitulated in mice subjected to unilateral 
ventral hippocampus GJ inhibition with 
contralateral prefrontal medial cortex inhibition, 
but not unilateral ventral hippocampus inhibition 
alone. Bilateral injections of GJ inhibitors in 
the dorsal hippocampus also failed to reduce 
anxiety, suggesting that GJ coordination of theta 
oscillations in the ventral hippocampus-medial 
prefrontal cortex pathway modulates anxiety 
[28]. 

Other studies have looked at the effects of 
induced disorders on the expression of GJs in the 
brain. Sun, et al. examined Cx43 expression and 
GJ communication in the brains of rats subjected 
to chronic unpredictable stress as a model of rat 
depression [29]. They found that GJ intercellular 
communication was suppressed in the prefrontal 
limbic cortex and Cx43 expression was reduced 
in rats subjected to chronic unpredictable stress, 
and that these effects were reduced by treatment 
with antidepressants. Interestingly, the authors 
also found that depression symptoms could 
be induced by application of the nonspecific 
GJ inhibitor carbenoxolone, and by the Cx43-
specific inhibitors Gap26 and Gap27. Given that 
astrocytes are the primary CNS cells expressing 
Cx43, the results strongly indicate that cortical 
astrocytic intercellular communication plays a 
role in the neuro-circuitry of emotion.

Another recent study used a novel Cx43 
hemichannel-specific inhibitory peptide 
called Gap19 to determine the role of Cx43 
hemichannels in memory [30]. Mice were 
microinfused with Gap19 in the brain ventricle 
and subjected to Y maze testing. Gap19 did not 
affect locomotion or spatial working memory, 
but reduced short-term spatial working memory 
in the delayed spontaneous alternation Y maze 
model. Taken together, these results indicate 
that astrocytes in the hippocampus mediate 
spatial working memory through paracrine 

gliotransmitters released by Cx43 hemichannels.

Finally, there is some evidence from humans that 
connexins play a significant role in psychology. 
Mefloquine is a drug (trade name Lariam®) 
that was developed by the army in the 1970’s 
in a large scale drug screen for compounds with 
antimalarial properties [31]. In the late 1980’s, 
following FDA approval, Lariam® became the 
antimalarial drug of choice for people traveling 
from the United States to regions of the world 
harboring chloroquine-resistant malaria [32]. 
However, mefloquine is no longer widely used 
in the US due to a number of adverse psychiatric 
side effects including anxiety, panic attacks, 
paranoia, persecutory delusions, dissociative 
psychosis, and anterograde amnesia [32]. The 
severity of these adverse effects is apparent in 
the description provided by the author David S. 
MacLean in his book The Answer to the Riddle 
Is Me detailing his experience in India in which 
mefloquine induced extreme psychosis and 
amnesia [33]. Unexpectedly, these effects might 
stem from inhibition of GJs in the inhibitory 
neurons of the limbic system [32], because as any 
connexin researcher will know, mefloquine is a 
commonly used GJ inhibitor [34].

Potential for Connexin-Based Therapeutics 
as Psychiatric Medications

It seems clear from the preceding discussion that 
the broad-spectrum GJ inhibitors mefloquine, 
carbenoxolone, and other well researched 
GJ inhibitors such as flufenamic acid and 
18-β-glycyrrhetinic, will likely not make good 
psychotherapeutics due to the potential for 
adverse side effects. However, targeted inhibitors 
could see more use. At this time, there are 
a number of GJ-based therapeutics in the 
pharmaceutical pipeline. We will not go into a 
detailed review of non-CNS-related applications 
of these drugs in this discussion (please see 
Grek, et al. for an excellent review of that topic 
[34]). Suffice it to say that these therapeutics 
have indications across the board in oncology, 
transplant, implants, wound healing (including 
reduced scarring in healthy patients and healing 
of ulcers in diabetic patients), inflammatory 
diseases, myocardial infarction, arrhythmia, 
stroke, migraine, neurodegenerative diseases, 
retinal disease, tissue engineering, and acute lung 
injury [2,6,34-36].

With respect to psychotherapeutic applications, 
there are no published studies to base expectations 
on. However, the reports discussed above suggest 
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regulating connexins in the brain [46]. Cx43 
was up-regulated in the prefontal cortex of rats 
when administered clozapine and fluoxetine, 
yet was down-regulated in rats administered 
haloperidol and lithium, thus suggesting that 
Cx43 may be a target of existing psychiatric 
pharmaceuticals.

Conclusions

Connexins are expressed throughout the brain 
and clearly play a role in the function of the 
CNS as it pertains to cognition, perception, 
and behavior. However, these roles have yet 
to be clearly delineated and future studies will 
be needed to further understand the complex 
and intertwining mechanisms that are played by 
intercellular communication within and between 
cell types of the CNS, and paracrine and autocrine 
signaling through small molecules and ions that 
are released through connexin hemichannels. 
Connexin-based therapeutics are an emerging 
line of drugs with broad indications, and we still 
have yet to understand the ways in which current 
drugs utilize connexins. We propose that many of 
these compounds can also have applications in the 
treatment of psychiatric disorders and diseases.

that improved GJ communication could have 
anti-depressive effects. Although most connexin-
based therapeutics have an inhibitory effect on 
GJ and/or hemichannel communication [37], 
a few of these compounds have been shown to 
improve intercellular communication. One such 
therapeutic is aCT1. aCT1 is a Cx43 mimetic 
peptide based on the last 9 amino acids of the 
Cx43 C-terminus [38]. We have previously 
shown that aCT1 increases GJ size [39], and 
enhances GJ communication [38]. aCT1 is 
currently undergoing clinical trials, and is the first 
connexin-based therapeutic to have a published 
clinical trial. Specifically, aCT1 was shown to 
improve healing of chronic venous leg ulcers 
[40], was efficacious in treating neuropathic 
diabetic foot ulcers in a multicenter, randomized 
trial [41], and reduced cutaneous scarring 
following laparoscopic surgery [42]. Another 
such therapeutic is PQ1, a small molecule that 
has been shown to increase GJ intercellular 
communication [43]. This drug has been tested 
in cancer models and shown to increase the 
efficacy of chemotherapeutics [44,45]. There is 
also budding research into the role that current 
mainstay psychiatric medications (clozapine, 
fluoxetine, haloperidol, and lithium) play in 
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