From known to unknown; old to new: can lesion studies inform psychiatry about mental illness in the 21st century?

Edward D Huey*1,2,3,4,5 Jeffrey A Lieberman4,5

“With the integration of 21st century technologies, including imaging, biochemistry and genetics, human lesion studies can provide powerful tools to elucidate psychiatric illnesses.”

“Since the development of noninvasive brain imaging in the mid-to-late 20th century and the advent of systems neuroscience and molecular neurobiology, the use of lesion studies has waned.”

Ever since, lesion studies in neuroscience have traditionally been defined as experiments that examine the effects of accidental or intentional brain injury in humans or animals to determine the normal function of the injured area. The logic of these studies is that if people or animals exhibit a behavioral deficit after injury, the brain area affected must be necessary to perform that behavioral function. The lesion method has been historically important and led to fundamental neuroscientific insights, for example, the findings of Broca and Wernicke on the neuroanatomy of language [2].

Since the development of noninvasive brain imaging in the mid-to-late 20th century and the advent of systems neuroscience and molecular neurobiology the use of lesion studies has waned. In fact,

“...With the integration of 21st century technologies, including imaging, biochemistry and genetics, human lesion studies can provide powerful tools to elucidate psychiatric illnesses.”

One hundred and sixty three years ago an explosion propelled an iron spike through the frontal lobe of a railroad worker named Phineas Gage. Miraculously, he survived. In reporting the case, John Harlow described the behavioral changes that occurred after the accident and speculated on the functions of the frontal lobes [1]. This marked a milestone as one of the first human ‘lesion’ (from the Latin word for injury) studies of the brain and behavior.

From known to unknown; old to new: can lesion studies inform psychiatry about mental illness in the 21st century?
one can ask if lesion studies have become ana-
chronistic – a relic of the past, such as pneumo-
encephalography, which has been supplanted by
superior technologies [3]. In addition, it can be
argued that mental disorders, such as schizophre-
nia, depression and anxiety disorders, entail
turbulences in neural circuits that are distributed
across multiple anatomic regions and, therefore,
are not amenable to lesion studies [4]. However,
despite these developments, we suggest that the
lesion method continues to be a powerful mode
of inquiry, including for psychiatric disorders.

Redefining lesion studies
The fundamental difference between lesion
studies and nonlesion studies is the direction
of inquiry; nonlesion studies attempt to move
from the unknown to the known, while lesion
studies attempt to move from the known to the
unknown. For example, if your car does not
start, a nonlesion approach would be to com-
pare it to other cars that work in an attempt
to move from the unknown (why does my car
not start?) to the known (the salient difference
between the cars that explains why mine does
not start). Lesion studies, by contrast, start with
a known (the spark plugs are missing in my car)
and attempt to determine the unknown (will
this affect the ability of the car to start?) to learn
about the function of spark plugs. We propose
redefining the lesion method as follows: ‘a sci-
entific experiment in which subjects with a defined
and identified abnormal anatomical, genetic or
biochemical variant not usually found in healthy
subjects are observed in an attempt to determine
the normal function of the variant in healthy
subjects’.

Functional MRI & human lesion studies in
psychiatry
As an example of how lesion studies can be used
to research mental disorders, we will discuss how
human lesion studies can be used to address the
weaknesses of functional MRI (fMRI) studies in
psychiatric patients. fMRI is currently a popular
imaging technique to investigate mental disor-
ders and human behavior. Thousands of papers
have been published using fMRI to investigate
psychiatric disorders. However, weaknesses of
fMRI include potential under- and over-inclus-
siveness of findings and difficulty interpret-
ing interactions between brain structures [3].
Human lesion studies address these problems
in the following ways [3].

fMRI detects regional changes in the blood-
oxygen-level-dependent signal when a subject
performs a task or a symptom is provoked, which
is usually interpreted as changes in activation of
a brain region [5]. However, fMRI is subject to
the problem of overinclusiveness; only a subset
of the brain areas that are activated during fMRI
while performing a certain task or exhibiting a
behavior actually mediate this behavior. To
determine which brain areas are necessary to
perform a behavior or experience a symptom, a
lesion study is required.

A second limitation of fMRI is potential
underinclusiveness [3]. fMRI studies that detect
changes in activation with performance of a task
or experience of a symptom fail to detect brain
areas that do not change activation. However,
some brain areas could be essential for perfor-
mance of the task or experience of the symp-
tom, but are constitutively active and, thus, are
not detected. There is accumulating evidence
that certain brain networks, for example, the
’default’ network, are active when subjects are
not performing external tasks, which is impor-
tant to understand behavior, memory and brain
disorders [6]. Human lesion studies can detect
which brain areas essential to the performance
of a behavior or experience of a symptom that
are not detected by fMRI. The importance of
networks composed of interacting brain struc-
tures is, of course, not new, having been pro-
posed by Luria, the father of neuropsychology,
in his ‘functional network theory’. Luria stressed
the need for lesion studies to deconstruct these
functional networks [7].

Human lesion studies can also address the
problem of the interpretation of interactions of
brain areas found to be activated or deactivated
on fMRI. Brain areas do not act in isolation and
it is difficult to determine the effects of activa-
tion or deactivation of one brain structure on
other brain structures. If two connected brain
areas are activated by a task or symptom provo-
cation, is the activation of one area driving the
other? Is one area active because it is trying to
suppress the other? These questions are not easily
answered by fMRI, but can be addressed with
human lesion studies in which the differential
effects of lesions in the two areas can be exam-
ined. As an example, we analyzed the effects of
brain lesions on the subsequent development of
post-traumatic stress disorder to elucidate the
relative roles of the ventromedial prefrontal
cortex and the amygdala [8].
Genetics & lesion studies
Human lesion studies can also complement knowledge gained from nonlesion genetic studies. Genome-wide association studies are commonly used to identify the genetic basis of complex disorders, such as mental illnesses. So far, these studies have accounted for a very small fraction of the known heritability of mental disorders [9]. Genome-wide association studies are designed to be able to detect the effects of multiple genes on the development of complex disorders, however, they are based on the assumption that the gene variants associated with the disorder are homogenous in the patient group [10]. This is likely to be an invalid assumption for many mental illnesses. An alternative approach to identify genes associated with mental illness is to find patients with a known genetic defect that results in psychiatric symptoms and identify the responsible gene(s). For example, velocardiofacial syndrome or DiGeorge Syndrome, is a neurodevelopmental disorder caused by a deletion of approximately 3 million base pairs near chromosome 22q11.2. It is associated with the development of psychosis, suggesting that disruption of a gene or genes on chromosome 22q11.2 can result in psychosis [11].

Biochemical lesion studies
Parkinson’s disease is a classic biochemical lesion study. This idiopathic degeneration of dopamine neurons in the substantia nigra pars compacta results in a deficiency in dopamine neurotransmission, with resultant motor, and often, psychiatric symptoms. This condition can be mimicked by the biochemical lesion inflicted by MPTP administration. Similar biochemical lesion models have been utilized in depression with serotonin depletion [12].

Criticisms of the use of human lesion studies in psychiatry
Some of the limitations of human lesion studies to study mental disorders are surmountable, while others are inherent to the lesion method. Lesion studies have been rightly criticized for relying on single case studies of unusual patients, reducing generalizability and the ability to subject hypotheses to statistical tests. To address this criticism, human lesion studies should adopt many of the research standards used in other types of clinical research: sufficient sample sizes, the use of control groups, a priori hypotheses and statistical methods to test hypotheses.

Of course, we cannot ethically induce permanent lesions in humans and so we are limited to opportunistic or reversible neuroanatomic, biochemical and genetic lesions. Techniques for reversible neuroanatomic lesions, such as transcranial magnetic stimulation and deep-brain stimulation, continue to develop and can be used to target an increasing number of brain areas.

Damage to the brain is not random, for example, strokes tend to occur in watershed areas of perfusion. Thus, it can be difficult to ascertain sufficient patients with damage to a particular brain area of interest without involvement of subsequent areas. Mutations do not act in isolation either; a mutation in a single gene can affect other gene products. These problems can be partially addressed statistically [13]. Another criticism is that complex behavior, personality, and emotion have a large premorbid variability, therefore it can be difficult to distinguish the changes that are due to the lesion from pre-existing characteristics. This problem can be addressed by using outside informants. There are also some situations in which subjects can be tested before and after a lesion (e.g., patients undergoing brain surgery and presymptomatic mutation carriers).

Conclusion
Psychiatric disorders are complex and multifaceted. Human lesion studies, which determine the effects of removing a single element from a biological system, can simplify the problem and, thus, provide unique insights on complex psychiatric disorders. With the integration of 21st century technologies, including imaging, biochemistry and genetics, human lesion studies can provide powerful tools to elucidate psychiatric illnesses.

Financial & competing interests disclosure
ED Huey is funded by the NIH/NINDS grant R00 NS060766 and The Irving Institute of Colombia University. JA Lieberman has received grant support from Allon, GlaxoSmithKline, Merck, Novartis, Pfizer, Sepracor and Targacept; has served (without financial compensation) on the advisory boards of Bioline, GlaxoSmithKline, Intracellular Therapies, Eli Lilly, Pierre Fabre and Psychogenics; and holds a patent from Repligen. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.
References